
SUBJECT CODE : PSIT303a

MACHINE LEARNING

M.Sc.(IT)
SEMESTER-III (CBCS)

Published by : Director
Institute of Distance and Open Learning ,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

November 2021, Print I

© UNIVERSITY OF MUMBAI

Prof. Prakash Mahanwar
Director

IDOL, University of Mumbai.

Prof. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai.

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,
University of Mumbai.

Programe Co-ordinator : Mandar L. Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai – 400098.

Course Co-ordinator : Ms. Preeti Bharanuke
Assistant Professor M.Sc.(I.T.),
Institute of Distance and Open Learning,
The University of Mumbai.

Course Writers : Ms. Beena Vinod Kapadia
Assistant Professor,
Vidyalankar School of Information Technology,
Vidyalankar Marg, Sangam Nagar, Wadala East, Mumbai 400042

: Dr. Rajendra b. Patil
Associate Professor,
Vidyalankar School of Information Technology,
Vidyalankar Marg, Sangam Nagar, Wadala East, Mumbai 400042

: Prof. Nilesh Rathod
Rajiv Gandhi Institute of Technology

: Shubhangi Liladhar Vaikole
Assistant Professor,
Datta Meghe College of Engineering,

: Dr. Amruta Avinash Mhatre
Usha Mittal Information Technology

DTP COMPOSED AND PRINTED BY
Mumbai University Press

Vidyanagari, Santacruz (E), Mumbai - 400098.

CONTENTS
Chapter No. Title Page No

UNIT I

1. Introduction To Machine Learning 01

2. Machine Learning Models 18

UNIT II

3. Classification and Regression 35

4. Regression 44

5. Theory of Generalization 63

UNIT III

6. Linear Models 71
7. Support Vector Machine 90

UNIT IV

8. Distance Based Models 105

9. Rule Based Models 134

10. Tree Based Models 148

UNIT V

11 Probabilistic Model 172

12. Machine Learning In Hyper-Automation 201

PSIT303a: Machine

Learning

M. Sc (Information Technology) Semester – III
Course Name: Machine Learning Course Code: PSIT303a

Periods per week (1 Period is 60 minutes) 4

Credits 4
 Hours Marks

Evaluation System Theory Examination 2½ 60

Internal -- 40

Course Objectives:

 Understanding Human learning aspects.

 Understanding primitives in learning process by computer.

 Understanding nature of problems solved with Machine Learning

Unit Lectures Outcome

I

Introduction: Machine

learning, Examples of Machine

Learning Problems, Structure

of Learning, learning versus

Designing, Training versus

Testing, Characteristics of

Machine learning tasks,

Predictive and descriptive

tasks, Machine learning

Models: Geometric Models,

Logical Models, Probabilistic

Models. Features: Feature

types,

Feature Construction and

Transformation, Feature

Selection.

12

CO1

II

Classification and

Regression: Classification:

Binary Classification-

Assessing Classification

performance, Class probability

Estimation Assessing class

probability Estimates,

Multiclass Classification.

Regression: Assessing

performance of Regression-

Error measures, Overfitting-

Catalysts for Overfitting, Case

study of Polynomial

Regression. Theory of

Generalization: Effective

12

CO2

number of hypothesis,

Bounding the Growth
function, VC Dimensions,
Regularization theory.

III

Linear Models: Least Squares

method, Multivariate Linear

Regression, Regularized

Regression, Using Least

Square regression for

Classification. Perceptron,

Support Vector Machines,

Soft Margin SVM, Obtaining

probabilities from Linear

classifiers, Kernel methods for

non-Linearity.

12

CO2

CO3

IV

Logic Based and Algebraic

Model: Distance Based

Models: Neighbours and

Examples, Nearest Neighbours

Classification, Distance based

clustering-K means Algorithm,

Hierarchical clustering, Rule

Based Models: Rule learning

for subgroup discovery,

Association rule mining. Tree

Based Models: Decision

Trees, Ranking and Probability

estimation Trees, Regression

trees, Clustering Trees.

12

CO2

CO3

CO4

V

Probabilistic Model:

Normal Distribution and Its

Geometric Interpretations,

Naïve Bayes Classifier,

Discriminative learning with

Maximum likelihood,

Probabilistic Models with

Hidden variables: Estimation-

Maximization Methods,

Gaussian Mixtures, and

Compression based Models.

Trends In Machine Learning

: Model and Symbols- Bagging

and Boosting, Multitask

learning, Online learning and

Sequence Prediction, Data

Streams and Active Learning,

Deep Learning, Reinforcement

Learning.

12

CO5

Books and References:

Sr. No. Title Author/s Publisher Edition Year

1. Machine Learning:
The Art
and Science of

Algorithms that

Make Sense of

Data

Peter Flach Cambridge
University

Press

 2012

2. Introduction to
Statistical
Machine

Learning

with

Applications

in R

Hastie,

Tibshirani,

Friedman

Springer 2nd 2012

3. Introduction to
Machine
Learning

Ethem
Alpaydin

PHI 2nd 2013

M. Sc (Information Technology) Semester – III
Course Name: Machine Learning Practical Course Code: PSIT3P3a

Periods per week (1 Period is 60 minutes) 4

Credits 2
 Hours Marks

Evaluation System Practical
Examination

2 50

Internal -- -

1

UNIT I

1

INTRODUCTION TO MACHINE
LEARNING

Unit Structure
1.0 Introduction

1.1 Machine learning

1.2 Examples of Machine Learning Problems

1.3 Structure of Learning

1.4 Learning versus Designing

1.5 Training versus Testing

1.6 Characteristics of Machine learning tasks

1.7 Predictive and descriptive tasks

Summary

Unit End Questions

References

1.0 INTRODUCTION

A human child learns new things and uncovers the structure of their world
year by year as they grow to adulthood. A child's brain and senses
perceive the facts of their surroundings and gradually learn the hidden
patterns of life which help the child to craft logical rules to identify
learned patterns. The learning process of the human brain makes humans
the most sophisticated living creature of this world. Learning continuously
by discovering hidden patterns and then innovating on those patterns
enables us to make ourselves better and better throughout our lifetime.
Superficially, we can draw some motivational similarities between the
learning process of the human brain and the concepts of machine learning.
(jlooper, n.d.)

The human brain perceives things from the real world, processes the
perceived information, makes rational decisions, and performs certain
actions based on circumstances. When we program a replica of the
intelligent behavioural process to a machine, it is called artificial
intelligence (AI).

Machine learning (ML) is an important subset of artificial
intelligence. ML is concerned with using specialized algorithms to

2

uncover meaningful information and find hidden patterns from perceived
data to support the logical decision-making process.

1.1 MACHINE LEARNING

Machine learning, from a systems perspective, is defined as the creation of
automated systems that can learn hidden patterns from data to aid in
making intelligent decisions.

This motivation is loosely inspired by how the human brain learns certain
things based on the data it perceives from the outside world. Machine
learning is the systematic study of algorithms and systems that improve
their knowledge or performance with experience.

A Machine Learning system learns from historical data, builds the
prediction models, and whenever it receives new data, predicts the output
for it. The accuracy of predicted output depends upon the amount of data,
as the huge amount of data helps to build a better model which predicts the
output more accurately.

Suppose we have a complex problem, where we need to perform some
predictions, so instead of writing a code for it, we just need to feed the
data to generic algorithms, and with the help of these algorithms, machine
builds the logic as per the data and predict the output.

Two definitions of Machine Learning are offered.

Arthur Samuel described it as: "The field of study that gives computers
the ability to learn from data without being explicitly programmed." This
is an older, informal definition.

Tom Mitchell provides a more modern definition. According to him, "A
computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E."

Example: playing checkers.

T = the task of playing checkers.

P = the probability that the program will win the next game.

E = the experience of playing many games of checkers

Let us now understand, Supervised Machine Learning, Unsupervised
Machine Learning and Reinforcement Learning:

Supervised Machine Learning:
Supervised learning is the types of machine learning in which machines
are trained using well "labelled" training data, and on basis of that data,

3

machines predict the output. The labelled data means some input data is
already tagged with the correct output.

In supervised learning, the training data provided to the machines work as
the supervisor that teaches the machines to predict the output correctly. It
applies the same concept as a student learns in the supervision of the
teacher.

Supervised learning is a process of providing input data as well as correct
output data to the machine learning model. The aim of a supervised
learning algorithm is to find a mapping function to map the input
variable(x) with the output variable(y).

In the real-world, supervised learning can be used for Risk Assessment,
Image classification, Fraud Detection, spam filtering, etc.

Supervised learning can be further divided into two types of
problems:

1. Regression:
Regression algorithms are used if there is a relationship between the input
variable and the output variable. It is used for the prediction of continuous
variables, such as Weather forecasting, Market Trends, etc. Linear
Regression, Regression Trees, Non-Linear Regression, Bayesian Linear
Regression, Polynomial Regression are some popular Regression
algorithms which come under supervised learning.

2. Classification:
Classification algorithms are used when the output variable is categorical,
which means there are two classes such as Yes-No, Male-Female, True-
false, etc. Spam Filtering, Random Forest, Decision Trees, Logistic
Regression, Support vector Machines are some examples of classification.

Unsupervised Machine Learning:
There may be many cases in which we do not have labeled data and need
to find the hidden patterns from the given dataset. So, to solve such types
of cases in machine learning, we need unsupervised learning techniques.
unsupervised learning is a machine learning technique in which models
are not supervised using training dataset. Instead, models itself find the
hidden patterns and insights from the given data. It can be compared to
learning which takes place in the human brain while learning new things.

Unsupervised learning cannot be directly applied to a regression or
classification problem because unlike supervised learning, we have the
input data but no corresponding output data. The goal of unsupervised
learning is to find the underlying structure of dataset, group that data
according to similarities, and represent that dataset in a compressed
format.

4

Example: Suppose the unsupervised learning algorithm is given an input
dataset containing images of different types of cats and dogs. The
algorithm is never trained upon the given dataset, which means it does not
have any idea about the features of the dataset. The task of the
unsupervised learning algorithm is to identify the image features on their
own. Unsupervised learning algorithm will perform this task by clustering
the image dataset into the groups according to similarities between images.

The unsupervised learning algorithm can be further categorized into two
types of problems:

1. Clustering

2. Association

1. Clustering:
Clustering is a method of grouping the objects into clusters such that
objects with most similarities remains into a group and has less or no
similarities with the objects of another group. Cluster analysis finds the
commonalities between the data objects and categorizes them as per the
presence and absence of those commonalities.

2. Association:
An association rule is an unsupervised learning method which is used for
finding the relationships between variables in the large database. It
determines the set of items that occurs together in the dataset. Association
rule makes marketing strategy more effective. Such as people who buy X
item (suppose a bread) are also tend to purchase Y (Butter/Jam) item. A
typical example of Association rule is Market Basket Analysis.

K-means clustering, KNN (k-nearest neighbors), Hierarchal clustering,
Anomaly detection, Neural Networks are the examples of unsupervised
learning.

Reinforcement Learning:
Reinforcement Learning is a feedback-based Machine learning technique
in which an agent learns to behave in an environment by performing the
actions and seeing the results of actions. For each good action, the agent
gets positive feedback, and for each bad action, the agent gets negative
feedback or penalty. In Reinforcement Learning, the agent learns
automatically using feedbacks without any labeled data, unlike supervised
learning.

Since there is no labelled data, so the agent is bound to learn by its
experience only. RL solves a specific type of problem where decision
making is sequential, and the goal is long-term, such as game-playing,
robotics, etc. The agent interacts with the environment and explores it by
itself. The primary goal of an agent in reinforcement learning is to
improve the performance by getting the maximum positive rewards.

5

The agent learns with the process of hit and trial, and based on the
experience, it learns to perform the task in a better way. Hence, we can say
that "Reinforcement learning is a type of machine learning method where
an intelligent agent (computer program) interacts with the environment
and learns to act within that”. How a Robotic dog learns the movement of
his arms is an example of Reinforcement learning.

1.2 EXAMPLES OF MACHINE LEARNING PROBLEMS:

Machine learning is a buzzword for today's technology, and it is growing
very rapidly day by day. We are using machine learning in our daily life
even without knowing it such as Google Maps, Google assistant, Alexa,
etc. Below are some most trending real-world applications of Machine
Learning:

1. Image Recognition:
Image recognition is one of the most common applications of machine
learning. It is used to identify objects, persons, places, digital images, etc.
The popular use case of image recognition and face detection is,
Automatic friend tagging suggestion:

Facebook provides us a feature of auto friend tagging suggestion.
Whenever we upload a photo with our Facebook friends, then we
automatically get a tagging suggestion with name, and the technology
behind this is machine learning's face detection and recognition algorithm.

It is based on the Facebook project named "Deep Face," which is
responsible for face recognition and person identification in the picture.

2. Speech Recognition:
While using Google, we get an option of "Search by voice," it comes
under speech recognition, and it's a popular application of machine
learning.

Speech recognition is a process of converting voice instructions into text,
and it is also known as "Speech to text", or "Computer speech
recognition." At present, machine learning algorithms are widely used by
various applications of speech recognition. Google assistant, Siri, Cortana,
and Alexa are using speech recognition technology to follow the voice
instructions.

3. Traffic prediction:
If we want to visit a new place, we take help of Google Maps, which
shows us the correct path with the shortest route and predicts the traffic
conditions.

It predicts the traffic conditions such as whether traffic is cleared, slow-
moving, or heavily congested with the help of two ways:

6

 Real Time location of the vehicle form Google Map app and sensors

 Average time has taken on past days at the same time.

Everyone who is using Google Map is helping this app to make it better. It
takes information from the user and sends back to its database to improve
the performance.

4. Product recommendations:
Machine learning is widely used by various e-commerce and
entertainment companies such as Amazon, Netflix, etc., for product
recommendation to the user. Whenever we search for some product on
Amazon, then we started getting an advertisement for the same product
while internet surfing on the same browser and this is because of machine
learning.

Google understands the user interest using various machine learning
algorithms and suggests the product as per customer interest. As similar,
when we use Netflix, we find some recommendations for entertainment
series, movies, etc., and this is also done with the help of machine
learning.

5. Self-driving cars:
One of the most exciting applications of machine learning is self-driving
cars. Machine learning plays a significant role in self-driving cars. Tesla,
the most popular car manufacturing company is working on self-driving
car. It is using unsupervised learning method to train the car models to
detect people and objects while driving.

6. Email Spam and Malware Filtering:
Whenever we receive a new email, it is filtered automatically as important,
normal, and spam. We always receive an important mail in our inbox with
the important symbol and spam emails in our spam box, and the
technology behind this is Machine learning. Below are some spam filters
used by Gmail:

 Content Filter

 Header filter

 General blacklists filter

 Rules-based filters

 Permission filters

Some machine learning algorithms such as Multi-Layer Perceptron,
Decision tree, and Naïve Bayes classifier are used for email spam filtering
and malware detection.

7. Virtual Personal Assistant:
We have various virtual personal assistants such as Google assistant,
Alexa, Cortana, Siri. As the name suggests, they help us in finding the

7

information using our voice instruction. These assistants can help us in
various ways just by our voice instructions such as Play music, call
someone, open an email, Scheduling an appointment, etc.

These virtual assistants use machine learning algorithms as an important
part. These assistants record our voice instructions, send it over the server
on a cloud, and decode it using ML algorithms and act accordingly.

8. Online Fraud Detection:
Machine learning is making our online transaction safe and secure by
detecting fraud transaction. Whenever we perform some online
transaction, there may be various ways that a fraudulent transaction can
take place such as fake accounts, fake ids, and steal money in the middle
of a transaction. So, to detect this, Feed Forward Neural network helps us
by checking whether it is a genuine transaction or a fraud transaction.

For each genuine transaction, the output is converted into some hash
values, and these values become the input for the next round. For each
genuine transaction, there is a specific pattern which gets change for the
fraud transaction hence, it detects it and makes our online transactions
more secure.

9. Stock Market trading:
Machine learning is widely used in stock market trading. In the stock
market, there is always a risk of up and downs in shares, so for this
machine learning's long short-term memory neural network is used for the
prediction of stock market trends.

10. Medical Diagnosis:
In medical science, machine learning is used for diseases diagnoses. With
this, medical technology is growing very fast and able to build 3D models
that can predict the exact position of lesions in the brain. It helps in finding
brain tumours and other brain-related diseases easily.

11. Automatic Language Translation:
Nowadays, if we visit a new place and we are not aware of the language
then it is not a problem at all, as for this also machine learning helps us by
converting the text into our known languages. Google's GNMT (Google
Neural Machine Translation) provide this feature, which is a Neural
Machine Learning that translates the text into our familiar language, and it
called as automatic translation.

The technology behind the automatic translation is a sequence-to-sequence
learning algorithm, which is used with image recognition and translates
the text from one language to another language.

8

1.3 STRUCTURE OF LEARNING

Like all other machine learning models, patterns are a manifestation of
underlying structure in the data. Sometimes this structure takes the form of
a single hidden or latent variable, much like unobservable but nevertheless
explanatory quantities in physics, such as energy. Consider the following
matrix:

(FLACH, 2012)

Imagine these represent ratings by six different people (in rows), on a
scale of 0 to 3, of four different films – say Khosla Ka Ghosla (KG),
Drishyam (D), BADLA (B), Hera Phery (HP), (in columns, from left to
right). BADLA (B) seems to be the most popular of the four with an
average rating of 1.5, and Khosla Ka Ghosla (KG) is the least appreciated
with an average rating of 0.5. Try to find a structure in this matrix.
(FLACH, 2012)

Try to look for columns or rows that are combinations of other columns or
rows. For instance, the third column turns out to be the sum of the first and
second columns. Similarly, the fourth row is the sum of the first and
second rows. What this means is that the fourth person combines the
ratings of the first and second person. Similarly, BADLA (B)’s ratings are
the sum of the ratings of the first two films. This is made more explicit by
writing the matrix as the following product:

(FLACH, 2012)

Notice that the first and third matrix on the right-hand side are now
Boolean, and the middle one is diagonal (all off-diagonal entries are zero).
Moreover, these matrices have a very natural interpretation in terms of
film genres.

9

The right-most matrix associates films (in columns) with genres (in rows):
Khosla Ka Ghosla (KG) and Drishyam (D) belong to two different genres,
say drama and crime, BADLA (B) belongs to both, and Hera Phery (HP)
is a crime film and also introduces a new genre (say comedy).

The tall, 6-by-3 matrix then expresses people’s preferences in terms of
genres: the first, fourth and fifth person like drama, the second, fourth and
fifth person like crime films, and the third, fifth and sixth person like
comedies. Finally, the middle matrix states that the crime genre is twice as
important as the other two genres in terms of determining people’s
preferences.

1.4 LEARNING VERSUS DESIGNING

According to Arthur Samuel “Machine Learning enables a Machine to
Automatically learn from Data, improve performance from an Experience
and predict things without explicitly programmed.”
(https://www.tutorialspoint.com/, n.d.)

In Simple Words, when we fed the Training Data to Machine Learning
Algorithm, this algorithm will produce a mathematical model and with the
help of the mathematical model, the machine will make a prediction and
take a decision without being explicitly programmed, as shown in figure
1.1. Also, during training data, the more machine will work with it the
more it will get experience and the more it will get experience the more
efficient result is produced.

Figure 1.1: Learn from data

Example: In Driverless Car, the training data is fed to Algorithm like
how to Drive Car in Highway, Busy and Narrow Street with factors like
speed limit, parking, stop at signal etc. After that, a Logical and
Mathematical model is created based on that and after that, the car will
work according to the logical model. Also, the more data the data is fed
the more efficient output is produced.

Designing a Learning System in Machine Learning:
According to Tom Mitchell, “A computer program is said to be learning
from experience (E), with respect to some task (T). Thus, the performance
measure (P) is the performance at task T, which is measured by P, and it
improves with experience E.”

Example: In Spam E-Mail detection,

Training Data
Machine
Learning

Algorithm

Building
Logical

Mathematical
Model

Output

10

Task, T: To classify mails into Spam or Not Spam.
Performance measure, P: Total percent of mails being correctly classified
as being “Spam” or “Not Spam”.

Experience, E: Set of Mails with label “Spam”
Steps for Designing Learning System are as shown in figure 1.2 below:

Step 1) Choosing the Training Experience: The very important and first
task is to choose the training data or training experience which will be fed
to the Machine Learning Algorithm. It is important to note that the data or
experience that we fed to the algorithm must have a significant impact on
the Success or Failure of the Model. So, training data or experience should
be chosen wisely.

Figure 1.2: Steps for Designing Learning System

Below are the attributes which will impact on Success and Failure of Data:

The training experience will be able to provide direct or indirect feedback
regarding choices. For example: While Playing chess the training data will
provide feedback to itself like instead of this move if this is chosen the
chances of success increases.

Second important attribute is the degree to which the learner will control
the sequences of training examples. For example: when training data is fed
to the machine then at that time accuracy is very less but when it gains
experience while playing again and again with itself or opponent the
machine algorithm will get feedback and control the chess game
accordingly.

Third important attribute is how it will represent the distribution of
examples over which performance will be measured. For example, a
Machine learning algorithm will get experience while going through a
number of different cases and different examples. Thus, Machine Learning
Algorithm will get more and more experience by passing through more
and more examples and hence its performance will increase.

Final Design

Choosing Function Approximation Algorithm

Choosing Representation for Target function

Choosing target function

Choosing the Training Experience

11

Step 2) Choosing target function: The next important step is choosing
the target function. It means according to the knowledge fed to the
algorithm the machine learning will choose NextMove function which will
describe what type of legal moves should be taken. For example: While
playing chess with the opponent, when opponent will play then the
machine learning algorithm will decide what be the number of possible
legal moves taken in order to get success.

Step 3) Choosing Representation for Target function: When the
machine algorithm will know all the possible legal moves the next step is
to choose the optimized move using any representation i.e. using linear
Equations, Hierarchical Graph Representation, Tabular form etc. The
NextMove function will move the Target move like out of these moves
which will provide more success rate. For Example: while playing chess
machine have 4 possible moves, so the machine will choose that optimized
move which will provide success to it.

Step 4) Choosing Function Approximation Algorithm: An optimized
move cannot be chosen just with the training data. The training data had to
go through with set of examples and through these examples the training
data will approximates which steps are chosen and after that machine will
provide feedback on it. For Example: When a training data of Playing
chess is fed to algorithm so at that time it is not machine algorithm will
fail or get success and again from that failure or success it will measure
while next move what step should be chosen and what is its success rate.

Step 5) Final Design: The final design is created at last when system goes
from number of examples, failures and success, correct and incorrect
decision and what will be the next step etc. Example: DeepBlue is an
intelligent computer which is ML-based won chess game against the chess
expert Garry Kasparov, and it became the first computer which had beaten
a human chess expert.

1.5 TRAINING VERSUS TESTING

Training data and test data are two important concepts in machine
learning.

Training Data:
The observations in the training set form the experience that the algorithm
uses to learn. In supervised learning problems, each observation consists
of an observed output variable and one or more observed input variables.

Test Data:
The test set is a set of observations used to evaluate the performance of the
model using some performance metric. It is important that no observations
from the training set are included in the test set. If the test set does contain
examples from the training set, it will be difficult to assess whether the

12

algorithm has learned to generalize from the training set or has simply
memorized it.

A program that generalizes well will be able to effectively perform a task
with new data. In contrast, a program that memorizes the training data by
learning an overly complex model could predict the values of the response
variable for the training set accurately but will fail to predict the value of
the response variable for new examples.

Memorizing the training set is called over-fitting. A program that
memorizes its observations may not perform its task well, as it could
memorize relations and structures that are noise or coincidence. Balancing
memorization and generalization, or over-fitting and under-fitting, is a
problem common to many machine learning
algorithms. Regularization may be applied to many models to reduce over-
fitting.

In addition to the training and test data, a third set of observations, called
a validation or hold-out set, is sometimes required. The validation set is
used to tune variables called hyper parameters, which control how the
model is learned. The program is still evaluated on the test set to provide
an estimate of its performance in the real world; its performance on the
validation set should not be used as an estimate of the model's real-world
performance since the program has been tuned specifically to the
validation data.

It is common to partition a single set of supervised observations into
training, validation, and test sets. There are no requirements for the sizes
of the partitions, and they may vary according to the amount of data
available. It is common to allocate 50 percent or more of the data to the
training set, 25 percent to the test set, and the remainder to the validation
set.

Some training sets may contain only a few hundred observations; others
may include millions. Inexpensive storage, increased network
connectivity, the ubiquity of sensor-packed smartphones, and shifting
attitudes towards privacy have contributed to the contemporary state of big
data, or training sets with millions or billions of examples.

However, machine learning algorithms also follow the maxim "garbage in,
garbage out." A student who studies for a test by reading a large,
confusing textbook that contains many errors will likely not score better
than a student who reads a short but well-written textbook. Similarly, an
algorithm trained on a large collection of noisy, irrelevant, or incorrectly
labelled data will not perform better than an algorithm trained on a smaller
set of data that is more representative of problems in the real world.

Many supervised training sets are prepared manually, or by semi-
automated processes. Creating a large collection of supervised data can be

13

costly in some domains. Fortunately, several datasets are bundled
with scikit-learn, allowing developers to focus on experimenting with
models instead.

During development, and particularly when training data is scarce, a
practice called cross-validation can be used to train and validate an
algorithm on the same data. In cross-validation, the training data is
partitioned. The algorithm is trained using all but one of the partitions and
tested on the remaining partition. The partitions are then rotated several
times so that the algorithm is trained and evaluated on all of the data.

Consider for example that the original dataset is partitioned into five
subsets of equal size, labelled A through E. Initially, the model is trained
on partitions B through E, and tested on partition A. In the next iteration,
the model is trained on partitions A, C, D, and E, and tested on partition B.
The partitions are rotated until models have been trained and tested on all
of the partitions. Cross-validation provides a more accurate estimate of the
model's performance than testing a single partition of the data.

1.6 CHARACTERISTICS OF MACHINE LEARNING
TASKS

To understand the actual power of machine learning, we must consider the
characteristics of this technology. There are lots of examples that echo the
characteristics of machine learning in today’s data-rich world. Here are
seven key characteristics of machine learning for which companies should
prefer it over other technologies:

1. The ability to perform automated data visualization

2. Automation at its best

3. Customer engagement like never before

4. The ability to take efficiency to the next level when merged with IoT

5. The ability to change the mortgage market

6. Accurate data analysis

7. Business intelligence at its best

1. The ability to perform automated data visualization:
A massive amount of data is being generated by businesses and common
people on a regular basis. By visualizing notable relationships in data,
businesses can not only make better decisions but build confidence as
well. Machine learning offers several tools that provide rich snippets of
data which can be applied to both unstructured and structured data. With
the help of user-friendly automated data visualization platforms in
machine learning, businesses can obtain a wealth of new insights to
increase productivity in their processes.

14

2. Automation at its best:

Figure 1.3 Machine Learning workflow

Figure 1.3 shows Machine Learning workflow. One of the biggest
characteristics of machine learning is its ability to automate repetitive
tasks and thus, increasing productivity. A huge number of organizations
are already using machine learning-powered paperwork and email
automation. In the financial sector, for example, a huge number of
repetitive, data-heavy and predictable tasks are needed to be performed.
Because of this, this sector uses different types of machine learning
solutions to a great extent. The make accounting tasks faster, more
insightful, and more accurate. Some aspects that have been already
addressed by machine learning include addressing financial queries with
the help of chatbots, making predictions, managing expenses, simplifying
invoicing, and automating bank reconciliations.

3. Customer engagement like never before:
For any business, one of the most crucial ways to drive engagement,
promote brand loyalty and establish long-lasting customer relationships is
by triggering meaningful conversations with its target customer base.
Machine learning plays a critical role in enabling businesses and brands to
spark more valuable conversations in terms of customer engagement. The
technology analyzes particular phrases, words, sentences, idioms, and
content formats which resonate with certain audience members. We can
think of Pinterest which is successfully using machine learning to
personalize suggestions to its users. It uses the technology to source
content in which users will be interested, based on objects which they have
pinned already.

4. The ability to take efficiency to the next level when merged with
IoT:
IoT is being designated as a strategically significant area by many
companies. And many others have launched pilot projects to gauge the
potential of IoT in the context of business operations. But attaining
financial benefits through IoT isn’t easy. In order to achieve success,
companies, which are offering IoT consulting services and platforms, need
to clearly determine the areas that will change with the implementation of
IoT strategies. Many of these businesses have failed to address it. In this
scenario, machine learning is probably the best technology that can be
used to attain higher levels of efficiency. By merging machine learning
with IoT, businesses can boost the efficiency of their entire production
processes.

import process visualize model evaluate

15

5. The ability to change the mortgage market:
It’s a fact that fostering a positive credit score usually takes discipline,
time, and lots of financial planning for a lot of consumers. When it comes
to the lenders, the consumer credit score is one of the biggest measures of
creditworthiness that involve a number of factors including payment
history, total debt, length of credit history etc. But wouldn’t it be great if
there is a simplified and better measure? With the help of machine
learning, lenders can now obtain a more comprehensive consumer picture.
They can now predict whether the customer is a low spender or a high
spender and understand his/her tipping point of spending. Apart from
mortgage lending, financial institutions are using the same techniques for
other types of consumer loans.

6. Accurate data analysis:
Traditionally, data analysis has always been encompassing trial and error
method, an approach which becomes impossible when we are working
with large and heterogeneous datasets. Machine learning comes as the best
solution to all these issues by offering effective alternatives to analyzing
massive volumes of data. By developing efficient and fast algorithms, as
well as, data-driven models for processing of data in real-time, machine
learning is able to generate accurate analysis and results.

7. Business intelligence at its best:
Machine learning characteristics, when merged with big data analytical
work, can generate extreme levels of business intelligence with the help of
which several different industries are making strategic initiatives. From
retail to financial services to healthcare, and many more – machine
learning has already become one of the most effective technologies to
boost business operations.

1.7 PREDICTIVE AND DESCRIPTIVE TASKS

In the similar fashion, as the distinction between supervised learning from
labelled data and unsupervised learning from unlabelled data, we can draw
a distinction between whether the model output involves the target
variable or not: we call it a predictive model if it does, and a descriptive
model if it does not. This leads to the four different machine learning
settings summarised in Table 1.1.

Predictive model Descriptive
model
Supervised learning classification, regression subgroup
discovery
Unsupervised learning predictive clustering descriptive
clustering,
association rule discovery

Table 1.1. An overview of different machine learning settings. (FLACH, 2012)

16

The rows refer to whether the training data is labelled with a target
variable, while the columns indicate whether the models learned are used
to predict a target variable or rather describe the given data.

The table 1.1 indicates following points:

 The most common setting is supervised learning of predictive models –
in fact, this is what people commonly mean when they refer to
supervised learning. Typical tasks are classification and regression.

 It is also possible to use labelled training data to build a descriptive
model that is not primarily intended to predict the target variable, but
instead identifies, say, subsets of the data that behave differently with
respect to the target variable. This example of supervised learning of a
descriptive model is called subgroup discovery.

 Descriptive models can naturally be learned in an unsupervised setting,
and we have just seen a few examples of that (clustering, association
rule discovery and matrix decomposition). This is often the implied
setting when people talk about unsupervised learning.

 A typical example of unsupervised learning of a predictive model
occurs when we cluster data with the intention of using the clusters to
assign class labels to new data. We will call this predictive clustering to
distinguish it from the previous, descriptive form of clustering.

SUMMARY

This chapter gives brief introduction of Machine Learning. After studying
this chapter, you will learn about definition of machine learning, what is
supervised, unsupervised and reinforcement learning, applications of
machine learning, how a pattern can be found from data, what are training
data and test data and predictive and descriptive tasks with respect to
supervised and unsupervised learning.

UNIT END QUESTIONS

1. Define and explain Machine Learning. Also explain its examples in
brief.

2. Explain supervised learning and unsupervised learning in detail.

3. Write a short note on learning verses designing.

4. Explain training data and test data in detail.

5. What are the characteristics of machine learning tasks? Explain each
one in brief.

6. What are predictive and descriptive tasks? Explain with respect to
supervised and unsupervised learning.

17

REFERENCES

 FLACH, P. (2012). MACHINE LEARNING The Art and Science of
Algorithms that Make Sense of Data. Cambridge, New York,
Melbourne, Madrid, Cape Town, Singapore, S˜ao Paulo, Delhi,
Mexico City: cambridge university press.

 jlooper, s. l. (n.d.). microsoft/ ML-For-Beginners. Retrieved from
https://github.com/microsoft/ML-For-Beginners/blob/main/1-
Introduction/1-intro-to-ML/README.md

 https://www.tutorialspoint.com/. (n.d.). Retrieved from
https://www.tutorialspoint.com/machine_learning_with_python/machi
ne_learning_with_python_training_test_data.htm. (2019, Nov 3).
https://magnimindacademy.com/blog/7-characteristics-of-machine-learning

18

2
MACHINE LEARNING MODELS

Unit Structure
2.0 Introduction

2.1 Geometric Models

2.2 Logical Models
2.3 Probabilistic Models

2.4 Features

2.5 Feature types

2.6 Feature Construction and Transformation

2.7 Feature Selection

Summary

Unit End Questions

References

2.0 INTRODUCTION

Models form the central concept in machine learning as they are what is
being learned from the data, in order to solve a given task. There is a
considerable – not to say be wildering – range of machine learning models
to choose from. One reason for this is the ubiquity of the tasks that
machine learning aims to solve: classification, regression, clustering,
association discovery, to name but a few. Examples of each of these tasks
can be found in virtually every branch of science and engineering.
Mathematicians, engineers, psychologists, computer scientists and many
others have discovered – and sometimes rediscovered – ways to solve
these tasks. They have all brought their specific background to bear, and
consequently the principles underlying these models are also diverse. My
personal view is that this diversity is a good thing as it helps to make
machine learning the powerful and exciting discipline it is. It doesn’t,
however, make the task of writing a machine learning book any easier!
Luckily, a few common themes can be observed, which allow me to
discuss machine learning models in a somewhat more systematic way. We
will discuss three groups of models: geometric models, probabilistic
models, and logical models. These groupings are not meant to be mutually
exclusive, and sometimes a particular kind of model has, for instance, both
a geometric and a probabilistic interpretation. Nevertheless, it provides a
good starting point for our purposes.

2.1 GEOMETRIC MODELS

The instance space is the set of all possible or describable instances,
whether they are present in our data set or not. Usually this set has some
geometric structure. For instance, if all features are numerical, then we can

19

use each feature as a coordinate in a Cartesian coordinate system. A
geometric model is constructed directly in instance space, using geometric
concepts such as lines, planes and distances. For instance, the linear
classifier depicted in Figure 1 on p.5 is a geometric classifier. One main
advantage of geometric classifiers is that they are easy to visualise, as long
as we keep to two or three dimensions. It is important to keep in mind,
though, that a Cartesian instance space has as many coordinates as there
are features, which can be tens, hundreds, thousands, or even more. Such
high-dimensional spaces are hard to imagine but are nevertheless very
common in machine learning. Geometric concepts that potentially apply to
high-dimensional spaces are usually prefixed with ‘hyper-’: for instance, a
decision boundary in an unspecified number of dimensions is called a
hyperplane.

If there exists a linear decision boundary separating the two classes, we
say that the data is linearly separable. As we have seen, a linear decision
boundary is defined by the equation w·x = t, where w is a vector
perpendicular to the decision boundary, x points to an arbitrary point on
the decision boundary, and t is the decision threshold. A good way to think
of the vector w is as pointing from the ‘centre of mass’ of the negative
examples, n, to the centre of mass of the positives p. In other words, w is
proportional (or equal) to p−n. One way to calculate these centres of mass
is by averaging. For instance, if P is a set of n positive examples, then we

can define P = ∑ ∈ and similarly for n. By setting the decision

threshold appropriately, we can intersect the line from n to p half-way
(Figure 2.1).

Source: (FLACH, 2012)

We will call this the basic linear classifier. It has the advantage of
simplicity, being defined in terms of addition, subtraction and rescaling of

20

examples only (in other words, w is a linear combination of the examples).
However, if those assumptions do not hold, the basic linear classifier can
perform poorly – for instance, note that it may not perfectly separate the
positives from the negatives, even if the data is linearly separable. Because
data is usually noisy, linear separability doesn’t occur very often in
practice, unless the data is very sparse, as in text classification. Recall that
we used a large vocabulary, say 10 000 words, each word corresponding
to a Boolean feature indicating whether or not that word occurs in the
document. This means that the instance space has 10 000 dimensions, but
for any one document no more than a small percentage of the features will
be non-zero. As a result there is much ‘empty space’ between instances,
which increases the possibility of linear separability. However, because
linearly separable data doesn’t uniquely define a decision boundary, we
are now faced with a problem: which of the infinitely many decision
boundaries should we choose? One natural option is to prefer large margin
classifiers, where the margin of a linear classifier is the distance between
the decision boundary and the closest instance. Support vector machines
are a powerful kind of linear classifier that find a decision boundary whose
margin is as large as possible (Figure 2.2).

Source: (FLACH, 2012)

A very useful geometric concept in machine learning is the distance. If the
distance between two instances is small then the instances are similar in
terms of their feature values, and so nearby instances would be expected to
receive the same classification or belong to the same cluster.

In a Cartesian coordinate system, distance can be measured by Euclidean
distance, which is the square root of the sum of the squared distances

along each coordinate: (−) + (−) . For n points, the

general formula is: ∑ (−)2

21

nearest-neighbour classifier:
A very simple distance-based classifier works as follows:
To classify a new instance, we retrieve from memory the most similar
training instance (i.e., the training instance with smallest Euclidean
distance from the instance to be classified), and simply assign that training
instance’s class. This classifier is known as the nearest-neighbour
classifier.

Suppose we want to cluster our data into K clusters, and we have an initial
guess of how the data should be clustered. We then calculate the means of
each initial cluster and reassign each point to the nearest cluster mean.
Unless our initial guess was a lucky one, this will have changed some of
the clusters, so we repeat these two steps (calculating the cluster means
and reassigning points to clusters) until no change occurs.

It remains to be decided how we construct our initial guess. This is usually
done randomly: either by randomly partitioning the data set into K
‘clusters’ or by randomly guessing K ‘cluster centres’. Instead of using
Euclidean distance, which May not work exactly the way it should, for
outliers, other distances can be used such as Manhattan distance, which
sums the distances along each coordinate: ∑ | − |.
2.2 LOGICAL MODELS

For a given problem, the collection of all possible outcomes represents
the sample space or instance space. The basic idea for creating a taxonomy
of algorithms is that we divide the instance space by using one of three
ways:

 Using a Logical expression.

 Using the Geometry of the instance space.

 Using Probability to classify the instance space.

The outcome of the transformation of the instance space by a machine
learning algorithm using the above techniques should be exhaustive (cover
all possible outcomes) and mutually exclusive (non-overlapping).

Logical models can also be expressed as Tree models and Rule models

Logical models use a logical expression to divide the instance space into
segments and hence construct grouping models. A logical expression is an
expression that returns a Boolean value, i.e., a True or False outcome.
Once the data is grouped using a logical expression, the data is divided
into homogeneous groupings for the problem we are trying to solve. For
example, for a classification problem, all the instances in the group belong
to one class.

22

There are mainly two kinds of logical models: Tree models and Rule
models.

Rule models consist of a collection of implications or IF-THEN rules. For
tree-based models, the ‘if-part’ defines a segment and the ‘then-part’
defines the behaviour of the model for this segment. Rule models follow
the same reasoning.

Tree models can be seen as a particular type of rule model where the if-
parts of the rules are organised in a tree structure. Both Tree models and
Rule models use the same approach to supervised learning. The approach
can be summarised in two strategies: we could first find the body of the
rule (the concept) that covers a sufficiently homogeneous set of examples
and then find a label to represent the body. Alternately, we could approach
it from the other direction, i.e., first select a class we want to learn and
then find rules that cover examples of the class.

The models of this type can be easily translated into rules that are
understandable by humans, such as ·if Bonus = 1 then Class = Y = spam·.
Such rules are easily organized in a tree structure, such as the one in
Figure 2.3, which is called a feature tree. The idea of such a tree is that
features are used to iteratively partition the instance space.

Source: (FLACH, 2012)

The leaves of the tree therefore correspond to rectangular areas in the
instance space, which we will call instance space segments, or segments
for short. Depending on the task we are solving, we can then label the
leaves with a class, a probability, a real value, and so on. Feature trees
whose leaves are labelled with classes are commonly called decision trees.
A complete feature tree, which contains all features, one at each level of
the tree is shown in figure 2.4.

23

A feature list is a binary feature tree which always branches in the same
direction, either left or right. The tree in Figure 2.3 is a left-branching
feature list. Such feature lists can be written as nested if–then–else
statements that will be familiar to anyone with a bit of programming
experience. For instance, if we were to label the leaves in Figure 2.3 by
majority class, we obtain the following decision list as per the Rule
learning:

if bonus = 1 then Class = Y = spam

else if lottery = 1 then Class = Y = spam
else Class = Y = ham

Both tree learning and rule learning are implemented in top-down fashion.
Select a feature from the instance space, which best splits the entire
training sets into different number of subsets. Each subset can then further
derive into subsets. Finally, all belongs to each node of a class. In tree
learning, we follow divide and conquer approach.

Source: (FLACH, 2012)

In rule based, first write a rule, based on some condition and then step by
step, we add more conditions to rule by using some set of examples from
the training dataset. Now remove those examples from the dataset. Here,
we find the class for each feature, ultimately. Here, we follow separate and
conquer.

Logical models often have different, equivalent formulations. For instance,
two alternative formulations for this model are:

if bonus = 1 ∨ lottery = 1 then Class = Y = spam·
else Class = Y = ham·

if bonus = 0 ∧ lottery = 0 then Class = Y = ham·
else Class = Y = spam·

We can also represent the same model as un-nested rules:

24

if bonus = 1 then Class = Y = spam·
if bonus = 0 ∧ lottery = 1 then Class = Y = spam·
if bonus = 0 ∧ lottery = 0 then Class = Y = ham.

Here, every path from root to a leaf is translated into a rule. As a result,
although rules from the same sub-tree share conditions (such as bonus=0),
every pair of rules will have at least some mutually exclusive conditions
(such as lottery = 1 in the second rule and lottery = 0 in the third).
However, this is not always the case: rules can have a certain overlap.
Before learning more on logical models let us understand the
terminologies – grouping and grading.

Grouping and grading:
Grouping is breaking the instance space into groups or segments, the
number of which is determined at training time. Figure 2.4 shows the
example of Grouping.

Grading models are able to distinguish between arbitrary instances, when
working in cartesian instance space. The basic linear classifier constructs a
decision boundary by half-way intersecting the line between the positive
(p) and negative (n) centers of mass. It is described by the equation w·x = t
(x is any arbitrary point), as shown in Figure 2.5 – example of Grading.

Figure 2.5 – example of Grading Source: (FLACH, 2012)

Let us now continue understanding logical models. An interesting aspect
of logical models, which sets them aside from most geometric and
probabilistic models, is that they can, to some extent, provide explanations
for their predictions.

For example, a prediction assigned by a decision tree could be explained
by reading off the conditions that led to the prediction from root to leaf.
The model itself can also easily be inspected by humans, which is why
they are sometimes called declarative. Declarative models do not need to
be restricted to the simple rules that we have considered so far.

25

The logical rule learning system Progol found the following set of
conditions to predict whether a molecular compound is carcinogenic
(causes cancer):

1. it tests positive in the Salmonella assay; or

2. it tests positive for sex-linked recessive lethal mutation in Drosophila;
or

3. it tests negative for chromosome aberration; or

4. it has a carbon in a six-membered aromatic ring with a partial charge
of −0.13; or

5. it has a primary amine group and no secondary or tertiary amines; or

6. it has an aromatic (or resonant) hydrogen with partial charge ≥ 0.168;
or

7. it has a hydroxy oxygen with a partial charge ≥ −0.616 and an
aromatic (or resonant) hydrogen; or

8. it has a bromine; or

9. it has a tetrahedral carbon with a partial charge ≤ −0.144 and tests
positive on Progol’s mutagenicity rules.

The first three conditions concerned certain tests that were carried out for
all molecules and whose results were recorded in the data as Boolean
features. In contrast, the remaining six rules all refer to the structure of the
molecule and were constructed entirely by Progol.

For instance, rule 4 predicts that a molecule is carcinogenic if it contains a
carbon atom with certain properties. This condition is different from the
first three in that it is not a pre-recorded feature in the data, but a new
feature that is constructed by Progol during the learning process because it
helps to explain the data.

Statisticians work very often with different conditional probabilities, given
by the likelihood function P(X|Y). For example, if somebody was to send
me a spam e-mail, how likely would it be that it contains exactly the words
of the e-mail I’m looking at? And how likely if it were a ham e-mail
instead?

With so many words to choose from, the probability of any particular
combination of words would be very small indeed. What really matters is
not the magnitude of these likelihoods, but their ratio: how much more
likely is it to observe this combination of words in a spam e-mail than it is
in a non-spam e-mail.

For instance, suppose that for a particular e-mail described by X we have
P(X|Y = spam) = 3.5 · 10−5 and P(X|Y = ham) = 7.4 · 10−6, then observing
X in a spam e-mail is much more likely than it is in a ham e-mail.

This suggests the following decision rule:

26

predict spam if the likelihood ratio is larger than 1 and ham otherwise.
So, which one should we use: posterior probabilities or likelihoods? As it
turns out, we can easily transform one into the other using Bayes’ rule, a
simple property of conditional probabilities which states that

Where, P(Y |X) is conditional probability

P(X |Y) is likelihood function

P(Y) is prior probability without observing data X and

P(X) is probability of features independent of Y

The first decision rule above suggested that we predict the class with
maximum posterior probability, which using Bayes’ rule can be written in
terms of the likelihood function.

2.3 PROBABILISTIC MODELS

The third type of models are probabilistic in nature, like the Bayesian
classifier we considered earlier. Many of these models are based around
the following idea. Let X denote the variables we know about, e.g., our
instance’s feature values; and let Y denote the target variables we’re
interested in, e.g., the instance’s class. The key question in machine
learning is how to model the relationship between X and Y.

Since X is known for a particular instance but Y may not be, we are
particularly interested in the conditional probabilities P(Y |X). For
instance, Y could indicate whether the e-mail is spam, and X could
indicate whether the e-mail contains the words ‘bonus’ and ‘lottery’. The
probability of interest is then P(Y | bonus, lottery), with bonus and lottery
two Boolean variables which together constitute the feature vector X. For
a particular e-mail we know the feature values and so we might write P(Y
|bonus = 1,lottery = 0) if the e-mail contains the word ‘bonus’ but not the
word ‘lottery’. This is called a posterior probability because it is used after
the features X are observed.

Table 2.1 shows an example of how these probabilities might be
distributed. From this distribution you can conclude that, if an e-mail
doesn’t contain the word ‘Bonus’, then observing the word ‘lottery’
increases the probability of the e-mail being spam from 0.31 to 0.65; but if
the e-mail does contain the word ‘Bonus’, then observing the word
‘lottery’ as well decreases the spam probability from 0.80 to 0.40.

27

Table 2.1. An example posterior distribution. ‘Bonus’ and ‘lottery’ are two Boolean
features; Y is the class variable, with values ‘spam’ and ‘ham’. In each row the most
likely class is indicated in blue. Source: (FLACH, 2012)

Even though this example table is small, it will grow unfeasibly large very
quickly, with n Boolean variables 2n cases have to be distinguished. We
therefore don’t normally have access to the full joint distribution and have
to approximate it using additional assumptions, as we will see below.

Assuming that X and Y are the only variables we know and care about, the
posterior distribution P(Y |X) helps us to answer many questions of
interest. For instance, to classify a new e-mail we determine whether the
words ‘Bonus’ and ‘lottery’ occur in it, look up the corresponding
probability P(Y = spam | Bonus, Lottery), and predict spam if this
probability exceeds 0.5 and ham otherwise. Such a recipe to predict a
value of Y on the basis of the values of X and the posterior distribution
P(Y |X) is called a decision rule.

2.4 FEATURES

MACHINE LEARNING IS ALL ABOUT using the right features to build
the right models that achieve the right tasks – this is the slogan, visualised
in Figure 2.6. In essence, features define a ‘language’ in which we
describe the relevant objects in our domain. We should not normally have
to go back to the domain objects themselves once we have a suitable
feature representation, which is why features play such an important role
in machine learning.

A task is an abstract representation of a problem we want to solve
regarding those domain objects: the most common form of these is
classifying them into two or more classes. Many of these tasks can be
represented as a mapping from data points to outputs.

This mapping or model is itself produced as the output of a machine
learning algorithm applied to training data; there is a wide variety of
models to choose from. No matter what variety of machine learning
models you may encounter, you will find that they are designed to solve
one of only a small number of tasks and use only a few different types of

28

features. One could say that models lend the machine learning field
diversity, but tasks and features give it unity.

Figure 2.6. An overview of how machine learning is used to address a given task. A task
(upper box) requires an appropriate mapping – a model – from data described by features
to outputs. Obtaining such a mapping from training data is what constitutes a learning
problem (lower box). Source: (FLACH, 2012)

Features determine much of the success of a machine learning application,
because a model is only as good as its features. A feature can be thought
of as a kind of measurement that can be easily performed on any instance.

Mathematically, they are functions, that map from the instance space to
some set of feature values called the domain of the feature. Since
measurements are often numerical, the most common feature domain is
the set of real numbers. Other typical feature domains include the set of
integers, for instance when the feature counts something, such as the
number of occurrences of a particular word; the Booleans, if our feature is
a statement that can be true or false for a particular instance, such as ‘this
e-mail is addressed to Beena Kapadia’; and arbitrary finite sets, such as a
set of colours, or a set of shapes.

Suppose we have a number of learning models that we want to describe in
terms of a number of properties:

 the extent to which the models are geometric, probabilistic or logical

 whether they are grouping or grading models

 the extent to which they can handle discrete and/or real-valued
features

 whether they are used in supervised or unsupervised learning; and

 the extent to which they can handle multi-class problems.

The first two properties could be expressed by discrete features with three
and two values, respectively; or if the distinctions are more gradual, each
aspect could be rated on some numerical scale.

2.5 FEATURE TYPES

29

There are mainly three kinds of features – Quantitative, Ordinal and
Categorical.

Table 2.1. Kinds of features, their properties and allowable statistics. Each kind inherits
the statistics from the kinds above it in the table. For instance, the mode is a statistic of
central tendency that can be computed for any kind of feature. Source: (FLACH, 2012)

Quantitative:
They have a meaningful numerical scale and order. They most often
involve a mapping into the reals or continuous. Even if a feature maps into
a subset of the reals, such as age expressed in years, the various statistics
such as mean or standard deviation still require the full scale of the reals.

Ordinal:
Features with an ordering but without scale are called ordinal features. The
domain of an ordinal feature is some totally ordered set, such as the set of
characters or strings. Even if the domain of a feature is the set of integers,
denoting the feature as ordinal means that we have to dispense with the
scale, as we did with house numbers. Another common example are
features that express a rank order: first, second, third, and so on. Ordinal
features allow the mode and median as central tendency statistics, and
quantiles as dispersion statistics.

Categorical:
Features without ordering or scale are called categorical features (or
sometimes ‘nominal’ features). They do not allow any statistical summary
except the mode. One subspecies of the categorical features is the Boolean
feature, which maps into the truth values true and false. The situation is
summarised in Table 2.1.

Models treat these different kinds of feature in distinct ways. First,
consider tree models such as decision trees. A split on a categorical feature
will have as many children as there are feature values. Ordinal and
quantitative features, on the other hand, give rise to a binary split, by
selecting a value v0 such that all instances with a feature value less than or
equal to v0 go to one child, and the remaining instances to the other child.
It follows that tree models are insensitive to the scale of quantitative
features. For example, whether a temperature feature is measured on the
Celsius scale or on the Fahrenheit scale will not affect the learned tree.
Neither will switching from a linear scale to a logarithmic scale have any
effect: the split threshold will simply be logv0 instead of v0. In general,
tree models are insensitive to monotonic transformations on the scale of a
feature, which are those transformations that do not affect the relative
order of the feature values. In effect, tree models ignore the scale of

30

quantitative features, treating them as ordinal. The same holds for rule
models.

Now let’s consider the naive Bayes classifier. We have seen that this
model works by estimating a likelihood function P(X|Y) for each feature
X given the class Y. For categorical and ordinal features with k values this
involves estimating P(X = v1|Y), . . . ,P(X = vk |Y). In effect, ordinal
features are treated as categorical ones, ignoring the order.

Quantitative features cannot be handled at all, unless they are discretised
into a finite number of bins and thus converted to categorical.
Alternatively, we could assume a parametric form for P(X|Y), for instance
a normal distribution.

While naive Bayes only really handles categorical features, many
geometric models go in the other direction: they can only handle
quantitative features. Linear models are a case in point: the very notion of
linearity assumes a Euclidean instance space in which features act as
Cartesian coordinates, and thus need to be quantitative. Distance-based
models such as k-nearest neighbour and K-means require quantitative
features if their distance metric is Euclidean distance, but we can adapt the
distance metric to incorporate categorical features by setting the distance
to 0 for equal values and 1 for unequal values.

In a similar vein, for ordinal features we can count the number of values
between two feature values (if we encode the ordinal feature by means of
integers, this would simply be their difference). This means that distance-
based methods can accommodate all feature types by using an appropriate
distance metric. Similar techniques can be used to extend support vector
machines and other kernel-based methods to categorical and ordinal
features.

2.6 FEATURE CONSTRUCTION AND
TRANSFORMATION

There is a lot of scope in machine learning for playing around with
features. In the spam filter example, and text classification more generally,
the messages or documents don’t come with built-in features; rather, they
need to be constructed by the developer of the machine learning
application. This feature construction process is absolutely crucial for the
success of a machine learning application.

Indexing an e-mail by the words that occur in it (called a bag of words
representation as it disregards the order of the words in the e-mail) is a
carefully engineered representation that manages to amplify the ‘signal’
and attenuate the ‘noise’ in spam e-mail filtering and related classification
tasks. However, it is easy to conceive of problems where this would be
exactly the wrong thing to do: for instance if we aim to train a classifier to

31

distinguish between grammatical and ungrammatical sentences, word
order is clearly signal rather than noise, and a different representation is
called for.

Figure 2.7. (left) Artificial data depicting a histogram of body weight
measurements of people with (blue) and without (red) diabetes, with eleven fixed
intervals of 10 kilograms width each. (right) By joining the first and second, third
and fourth, fifth and sixth, and the eighth, ninth and tenth intervals, we obtain a
discretisation such that the proportion of diabetes cases increases from left to
right. This discretisation makes the feature more useful in predicting diabetes.
(FLACH, 2012)

It is often natural to build a model in terms of the given features. However,
we are free to change the features as we see fit, or even to introduce new
features. For instance, real-valued features often contain unnecessary
detail that can be removed by discretisation. Imagine you want to analyse
the body weight of a relatively small group of, say, 100 people, by
drawing a histogram.

If you measure everybody’s weight in kilograms with one position after
the decimal point (i.e., your precision is 100 grams), then your histogram
will be sparse and spiky. It is hard to draw any general conclusions from
such a histogram. It would be much more useful to discretise the body
weight measurements into intervals of 10 kilograms. If we are in a
classification context, say we’re trying to relate body weight to diabetes,
we could then associate each bar of the histogram with the proportion of
people having diabetes among the people whose weight falls in that
interval. In fact, we can even choose the intervals such that this proportion
is monotonically increasing as shown in Figure 2.7.

The previous example gives another illustration of how, for a particular
task such as classification, we can improve the signal-to-noise ratio of a
feature. In more extreme cases of feature construction, we transform the
entire instance space. Consider Figure 2.6: the data on the left is clearly
not linearly separable, but by mapping the instance space into a new
‘feature space’ consisting of the squares of the original features we see
that the data becomes almost linearly separable. In fact, by adding in a
third feature we can perform a remarkable trick: we can build this feature
space classifier without actually constructing the feature space.

2.7 FEATURE SELECTION

32

Once we have constructed new features it is often a good idea to select a
suitable subset of them prior to learning. Not only will this speed up
learning as fewer candidate features need to be considered, it also helps to
guard against overfitting.

(FLACH, 2012)

There are two main approaches to feature selection, The filter approach
and the relief approach.

The filter approach scores the features on a particular metric and the top-
scoring features are selected. Many of the metrics we have seen so far can
be used for feature scoring, including information gain, the χ2 statistic, the
correlation coefficient, to name just a few.

An interesting variation is provided by the Relief feature selection method,
which repeatedly samples a random instance x and finds its nearest hit h
(instance of the same class) as well as its nearest miss m (instance of
opposite class). The i -th feature’s score is then decreased by Dis(xi , hi)2

and increased by Dis(xi , mi)2, where Dis is some distance measure (e.g.,
Euclidean distance for quantitative features, Hamming distance for
categorical features). The intuition is that we want to move closer to the
nearest hit while differentiating from the nearest miss.

One drawback of a simple filter approach is that no account is taken of
redundancy between features. Imagine, for the sake of the argument,
duplicating a promising feature in the data set: both copies score equally
high and will be selected, whereas the second one provides no added value
in the context of the first one.
Secondly, feature filters do not detect dependencies between features as
they are solely based on marginal distributions. For example, consider two
Boolean features such that half the positives have the value true for both
features and the other half have the value false for both, whereas all
negatives have opposite values (again distributed half-half over the two

33

possibilities). It follows that each feature in isolation has zero information
gain and hence is unlikely to be selected by a feature filter, despite their
combination being a perfect classifier. One could say that feature filters
are good at picking out possible root features for a decision tree, but not
necessarily good at selecting features that are useful further down the tree.

To detect features that are useful in the context of other features, we need
to evaluate sets of features; this usually goes under the name of wrapper
approaches. The idea is that feature selection is ‘wrapped’ in a search
procedure that usually involves training and evaluating a model with a
candidate set of features.

Forward selection methods start with an empty set of features and add
features to the set one at a time, as long as they improve the performance
of the model. Backward elimination starts with the full set of features and
aims at improving performance by removing features one at a time. Since
there are an exponential number of subsets of features it is usually not
feasible to search all possible subsets, and most approaches apply a
‘greedy’ search algorithm that never reconsiders the choices it makes.

SUMMARY

After studying this chapter, you will understand different modes like
Geometric Models, Logical Models and Probabilistic Models. You will
understand about features usage and why it is very important in model
designing. You will also understand about different Feature types, how
they can be Constructed and why their Transformation required and how it
can be done. You will also understand how Feature Selection plays an
important role in designing a model and how to do it.

UNIT END QUESTIONS

1. How a linear classifier construct decision boundary using linear
separable data? Explain it in detail with respect to geometric models
of Machine Learning.

2. Explain the working of decision boundary learned by Support Vector
Machine from linear separable data with respect to geometric models
of Machine Learning.

3. Describe logical models.

4. Write a short note on probabilistic models.

5. Machine learning is all about using the right features to build the right
models that achieve the right tasks – justify this sentence.

6. What are various types of features available? Explain each one in
brief.

34

7. Why are feature construction and feature transformation required?
How to achieve them?

8. What are the approaches to feature selection? Explain each one in
detail.

REFERENCES

 FLACH, P. (2012). MACHINE LEARNING The Art and Science of
Algorithms that Make Sense of Data. Cambridge, New York,
Melbourne, Madrid, Cape Town, Singapore, S˜ao Paulo, Delhi,
Mexico City: cambridge university press.

35

UNIT II

3

CLASSIFICATION AND REGRESSION

Unit structure
3.0 Objectives

3.1 Introduction

3.2 Classification

3.3 Binary Classification

3.4 Assessing Classification performance

3.5 Class probability Estimation

3.6 Assessing class probability Estimates

3.7 Multiclass Classification

Summary

Unit End Questions

References

3.0 OBJECTIVES

A learner will learn:

- Machine learning methods like classification

- Will also explore the classification algorithms with practical
approach.

- Concept of multiclass classification

3.1 INTRODUCTION

Classification may be defined as the process of predicting class or
category from observed values or given data points. The categorized
output can have the form such as “Red” or “Blue” or “spam” or “no
spam”.

Conceptually, classification is the task of approximating a mapping
function (f) from input variables (X) that tends to output variables (Y). It
is basically belonging to the supervised machine learning in which targets
are also provided along with the input data set.

An example of classification problem can be the spam detection in emails.
There can be only two categories of output, “spam” and “no spam”; hence
this is a binary type classification.

36

To implement this classification, we first need to train the classifier. For
this example, “spam” and “no spam” emails would be used as the training
data. After successfully train the classifier, it can be used to detect an
unknown email.

3.1.1Types of Learners in Classification:
There exist two types of learners in classification problems –

a. Lazy Learners:
These learners wait for the testing data to be appeared after storing the
training data. Classification is done only after getting the testing data.
They spend less time on training but more time on predicting. Examples of
lazy learners are K-nearest neighbor and case-based reasoning.

b. Eager Learners
As opposite to lazy learners, eager learners construct classification model
without waiting for the testing data to be appeared after storing the
training data. They spend more time on training but less time on
predicting. Examples of eager learners are Decision Trees, Naïve Bayes
and Artificial Neural Networks (ANN).’

3.2 CLASSIFICATION

In machine learning, classification refers to a predictive modeling problem
where a class label is predicted for a given example of input data.
Classification is the most common task in machine learning. A classifier is
cˆ: X → C, where C = {C1,C2,...,Ck } is a finite and usually small set of
class labels. We will sometimes also use Ci to indicate the set of examples
of that class. We use the ‘hat’ to indicate that cˆ(x) is an estimate of the
true but unknown function c(x). Examples for a classifier take the form
(x,c(x)), where x ∈ X is an instance and c(x) is the true class of the
instance. Learning a classifier involves constructing the function cˆ such
that it matches c as closely as possible (and not just on the training set, but
ideally on the entire instance space X).

Classification in machine learning and statistics is a supervised learning
approach in which the computer program learns from the data given to it
and make new observations or classifications. Classification is a process
of categorizing a given set of data into classes, It can be performed on
both structured or unstructured data. The process starts with predicting the
class of given data points. The classes are often referred to as target, label
or categories. The classification predictive modelling is the task of
approximating the mapping function from input variables to discrete
output variables. The main goal is to identify which class/category the new
data will fall into.

37

Fig 3.1: Email classification example

The algorithm which implements the classification on a dataset is known
as a classifier. There are two types of Classifications:

 Binary Classifier: If the classification problem has only two possible
outcomes, then it is called as Binary Classifier.
Examples: YES or NO, MALE or FEMALE, SPAM or NOT SPAM,
CAT or DOG, etc.

 Multi-class Classifier: If a classification problem has more than two
outcomes, then it is called as Multi-class Classifier.
Example: Classifications of types of crops, Classification of types of
music.

3.3 ASSESSING CLASSIFICATION PERFORMANCE

The contingency table is used to assess the performance of classification.
The table is also known as confusion matrix. The table is constituted with
rows and columns. Each row refers to actual classes as recorded in the
test set, and each column to classes as predicted by the classifier. In the
given table 3.1 , the first row states that the test set contains 50 positives,
30 of which were correctly predicted and 20 incorrectly. The last column
and the last row give the marginals (i.e., column and row sums). Marginals
are important because they allow us to assess statistical significance.

Predicted (+ve) Predicted (-ve)
Actual (+ve) 30 20 50
Actual (-ve) 10 40 50

40 60 100
Table 3.1: Confusion Matrix

+ve -ve
+ve 20 30 50
-ve 20 30 50

40 60 100
Table 3.2: two-class contingency table

The table 3.2, has the same marginals, but the classifier clearly makes a
random choice as to which predictions are positive and which are negative

38

– as a result the distribution of actual positives and negatives in either
predicted class is the same.

From a contingency table we can calculate a range of performance
indicators. The simplest of these is accuracy, which is the proportion of
correctly classified test instances. In the notation introduced at the
beginning of this chapter, accuracy over a test set Te is defined as shown
in equation 3.1:

……….(3.1)

As stated in the equation 3.1, the function I[·] denotes the indicator
function, which is 1 if its argument evaluates to true, and 0 otherwise. In
this case it is a convenient way to count the number of test instances that
are classified correctly by the classifier (i.e., the estimated class label cˆ(x)
is equal to the true class label c(x)). Alternatively, we can calculate the
error rate as the proportion of incorrectly classified instances, here 0.30
and 0.50, respectively. Clearly, accuracy and error rate sum to 1.

Test set accuracy can be seen as an estimate of the probability that an
arbitrary instance x ∈ X is classified correctly: more precisely, it estimates
the probability.

We have access to the true classes of a small fraction of the instance space
and so an estimate is all we can hope to get. It is therefore important that
the test set is as representative as possible. This is usually formalised by
the assumption that the occurrence of instances in the world. Correctly
classified positives and negatives are referred to as true positives and true
negatives, respectively. Incorrectly classified positives are, perhaps
somewhat confusingly, called false negatives; similarly, misclassified
negatives are called false positives. The positive/negative refers to the
classifier’s prediction, and true/false refers to whether the prediction is
correct or not. So, a false positive is something that was incorrectly
predicted as positive, and therefore an actual negative (e.g., a ham email
misclassified as spam, or a healthy patient misclassified as having the
disease in question).

The true positive rate is the proportion of positives correctly classified,
and can be defined mathematically as given in equation 3.2:

………(3.2)

39

True positive rate is an estimate of the probability that an arbitrary positive
is classified correctly, that is, an estimate of PX (cˆ(x) = +ve|c(x) = +ve).
Analogously, the true negative rate is the proportion of negatives correctly
classified and estimates PX (cˆ(x) = -ve|c(x) = -ve). These rates, which are
sometimes called sensitivity and specificity, can be seen as per-class
accuracies. In the contingency table, the true positive and negative rates
can be calculated by dividing the number on the descending (good)
diagonal by the row total. In table 3.2, we have a true positive rate of 60%,
a true negative rate of 80%, a false negative rate of 40% and a false
positive rate of 20%. We have a true positive rate of 40%, a true negative
rate of 60%, a false negative rate of 60% and a false positive rate of 40%.
Notice that the accuracy in both cases is the average of the true positive
rate and the true negative rate .

Example 2.1 (Accuracy as a weighted average). Suppose a classifier’s
predictions on a test set are as in the following table:

Predicted (+ve) Predicted (-ve)
Actual (+ve) 60 15 75
Actual (-ve) 10 15 25

70 30 100

From this table, we see that the true positive rate is tpr = 60/75 = 0.80 and
the true negative rate is tnr = 15/25 = 0.60. The overall accuracy is acc =
(60 + 15)/100 = 0.75, which is no longer the average of true positive and
negative rates. However, taking into account the proportion of positives
pos = 0.75 and the proportion of negatives neg = 1−pos = 0.25, we see that
acc = pos·tpr +neg ·tnr

This equation holds in general: if the numbers of positives and negatives
are equal, we obtain the unweighted average from the earlier example (acc
= (tpr + tnr)/2). The given equation has a neat intuition: good performance
on either class contributes to good classification accuracy, but the more
prevalent class contributes more strongly. In order to achieve good
accuracy, a classifier should concentrate on the majority class, particularly
if the class distribution is highly unbalanced. However, it is often the case
that the majority class is also the least interesting class.

3.4 CLASS PROBABILITY ESTIMATION

A class probability estimator – or probability estimator in short – is a
scoring classifier that outputs probability vectors over classes, i.e., a
mapping pˆ : X → [0,1]k . We write pˆ (x) = pˆ1(x),...,pˆk (x) , where
pˆi(x) is the probability assigned to class Ci for instance x, and k i=1 pˆi(x)
= 1. If we have only two classes, the probability associated with one class
is 1 minus the probability of the other class; in that case, we use pˆ(x) to
denote the estimated probability of the positive class for instance x. As

40

with scoring classifiers, we usually do not have direct access to the true
probabilities pi(x).

First, assume a situation in which any two instances are similar to each
other. We then have PC (c(x) = ⊕|x ∼ x) = PC (c(x) = ⊕) which is
simply estimated by the proportion pos of positives in our data set (I am
going to drop the subscript C from now on). In other words, in this
scenario we predict pˆ(x) = pos regardless

Figure 3.2. A probability estimation tree

of whether we know anything about x’s true class. At the other extreme,
consider a situation in which no two instances are similar unless they are
the same, i.e., x ∼ x if x = x, and x ∼ x otherwise. In this case we have
P(c(x) = +ve|x∼ x) = P(c(x) = +ve), which – because x is fixed – is 1 if
c(x) = +ve and 0 otherwise. Put differently, we predict pˆ(x) = 1 for all
known positives and pˆ(x) = 0 for all known negatives, but we can’t
generalise this to unseen instances.

A feature tree allows us to strike a balance between these extreme and
simplistic scenarios, using the similarity relation ∼T associated with
feature tree T : x ∼T x if, and only if, x and x are assigned to the same leaf
of the tree. In each leaf we then predict the proportion of positives
assigned to that leaf.

3.5 ASSESSING CLASS PROBABILITY ESTIMATES

As with classifiers, we can now ask the question of how good these class
probability estimators are. A slight complication here is that, as already

41

remarked, we do not have access to the true probabilities. One trick that is
often applied is to define a binary vector (I[c(x) = C1],...,I[c(x) = Ck]),
which has the i-th bit set to 1 if x’s true class is Ci and all other bits set to
0, and use these as the ‘true’ probabilities. We can then define the squared
error (SE) of the predicted probability vector pˆ (x) = (pˆ1(x),...,pˆk (x)) as
:

……. (3.3)

and the mean squared error (MSE) as the average squared error over all
instances in the test set:

………. (3.4)

This definition of error in probability estimates is often used in forecasting
theory where it is called the Brier score.

Example 2.6 (Squared error).:
Suppose one model predicts (0.70,0.10,0.20) for a particular example x in
a three-class task, while another appears much more certain by predicting
(0.99, 0, 0.01). If the first class is the actual class, the second prediction is
clearly better than the first: the SE of the first prediction is ((0.70 −
1)2+(0.10−0)2+(0.20−0)2)/2 = 0.07, while for the second prediction it is
((0.99− 1)2+(0−0)2+(0.01−0)2)/2 = 0.0001. The first model gets punished
more because, although mostly right, it isn’t quite sure of it. However, if
the third class is the actual class, the situation is reversed: now the SE of
the first prediction is ((0.70−0)2 +(0.10−0)2 +(0.20−1)2)/2 = 0.57, and of
the second ((0.99−0)2 +(0−0)2 +(0.01−1)2)/2 = 0.98. The second model
gets punished more for not just being wrong, but being presumptuous.

Wit reference to figure 3.2, we calculate the squared error per leaf as
follows (left to right): SE1 = 20(0.33−1)2 +40(0.33−0)2 = 13.33 SE2 =
10(0.67−1)2 +5(0.67−0)2 = 3.33 SE3 = 20(0.80−1)2 +5(0.80−0)2 = 4.00.
which leads to a mean squared error of MSE = 1 100 (SE1+SE2+SE3) =
0.21

An interesting question is whether we can change the predicted
probabilities in each leaf to obtain a lower mean squared error. It turns out
that this is not possible: predicting probabilities obtained from the class
distributions in each leaf is optimal in the sense of lowest MSE.

For instance, changing the predicted probabilities in the left-most leaf to
0.40 for spam and 0.60 for ham, or 0.20 for spam and 0.80 for ham, results
in a higher squared error: SE 1 = 20(0.40−1)2 +40(0.40−0)2 = 13.6 SE 1 =
20(0.20−1)2 +40(0.20−0)2 = 14.4 The reason for this becomes obvious if
we rewrite the expression for two-class squared error of a leaf as follows,

42

using the notation n⊕ and nfor the numbers of positive and negative
examples in the leaf:

where p˙ = n⊕/(n⊕ +n) is the relative frequency of the positive class
among the examples covered by the leaf, also called the empirical
probability. As the term p˙(1−p˙) does not depend on the predicted
probability pˆ, we see immediately that we achieve lowest squared error in
the leaf if we assign pˆ = p˙.

3.6 MULTI-CLASS PROBABILITY ESTIMATION

Consider the standard setting of multi-class classification with an instance
space X and a set of classes Y = {y1, . . . , yK}. We are interested in
learning a probabilistic classifier, that is, a model that estimates the
conditional probabilities of classes given an instance x ∈ X:
(p1, . . . , pK) = (Py (y1 | x), . . . , Py (yK | x)) (3.4)

Since true probability degrees are rarely available for training,
probabilistic classifiers are typically trained on standard classification
data, that is, observations of the form (x, y) ∈ X × Y, where the class label
y is assumed to be generated according to Py (· | x).

Probability estimation is known to be a quite hard problem, especially in
comparison to standard classification. This comes at no surprise, noting
that proper probability estimation is a sufficient but not necessary
condition for proper classification: If the conditional class probabilities (1)
are predicted accurately, an optimal classification can simply be made by
picking the class with highest probability:

……………….. (3.5)

The Bayes decision can be taken so as to minimize any loss in expectation.
On the other hand, a correct classification can also be obtained based on
less accurate probability estimates. In fact, the classification will remain
correct as long as the estimated probability is highest for the true class. Or,
stated differently, an estimation error will remain ineffective unless it
changes the result of the arg max operation.

Methods like naive Bayes and decision trees are multi-class classifiers and
can in principle be used to produce probability estimates in this setting. In
practice, however, one often prefers to estimate probabilities in the two-
class setting, especially because estimating a single probability (of the
positive class) is much simpler than estimating K − 1 probabilities
simultaneously. Moreover, the binary case is amenable to a broader

43

spectrum of classifiers, including logistic regression, which is a proven
method for probability estimation. On the other hand, the reduction of
multinomial to binomial probability estimation obviously involves an
aggregation problem, namely the need to combine probabilities on pairs of
classes into probabilities on the label set Y. This is the idea of “pairwise
coupling” techniques.

SUMMARY

Classification deals with labelling the tuples base on some attribute.
Binary classification refers to predicting one of two classes and multi-class
classification involves predicting one of more than two classes. Multi-
label classification involves predicting one or more classes for each
example and imbalanced classification refers to classification tasks where
the distribution of examples across the classes is not equal. Class
probability Estimation. A class probability estimator – or probability
estimator is a scoring classifier. Multi-class classification makes the
assumption that each sample is assigned to one and only one label.

UNIT END QUESTIONS

1. Explain the concept of classification with suitable example.

2. Illustrate the assessment of classification with suitable example.

3. Write a note on binary classification

4. Briefly explain the concept of class probability Estimation

5. Explain Multiclass Classification with concept note.

6. How are classification estimates assessed? Explain with suitable
example.

REFERENCES

 Peter Flach, Machine Learning The Art and Science of Algorithms that Make Sense
of Data, Cambridge Press, 2012

 Baidaa M Alsafy, Zahoor Mosad, Wamidh k. Mutlag, Multiclass Classification
Methods: A Review, International Journal of Advanced Engineering Technology and
Innovative Science (IJAETIS), 2020.

 Robust Model-Free Multiclass Probability Estimation (nih.gov)

 Probability Estimation - an overview | ScienceDirect Topics

44

4

REGRESSION

Unit structure
4.0 Objectives

4.1 Introduction

4.2 Assessing performance of Regression

4.2.1 Error measures

4.3 Overfitting

4.3.1 Catalysts for Overfitting

4.4 Case study of Polynomial Regression

Summary

Unit End Questions

References

4.0 OBJECTIVES

A learning will learn:

- regression method with practical cases

- how to apply regression method

- identify the error measures with overfitting values

4.1 INTRODUCTION

Regression is a method of modelling a target value based on independent
predictors. This method is mostly used for forecasting and finding out
cause and effect relationship between variables. Regression techniques
mostly differ based on the number of independent variables and the type
of relationship between the independent and dependent variables.
Regression is a supervised learning technique which helps in finding the
correlation between variables and enables us to predict the continuous
output variable based on the one or more predictor variables. It is mainly
used for prediction, forecasting, time series modeling, and determining the
causal-effect relationship between variables.

As mentioned earlier Linear Regression is a supervised machine learning
algorithm. It predicts the value within a continuous range of numbers.

45

1. Simple regression:
Simple linear regression uses traditional slope-intercept form to produce
the most accurate predictions. x represents our input data and y represents
our prediction.

The motive of the linear regression algorithm is to find the best values
for m and c in the equation y = mx + c.

Fig. 4.1: Simple Linear Regression

Simple linear regression is a type of regression analysis where the number
of independent variables is one and there is a linear relationship between
the independent(x) and dependent(y) variable. The red line in the above
graph is referred to as the best fit straight line. Based on the given data
points, we try to plot a line that models the points the best. The line can be
modelled based on the linear equation shown below.

y = a_0 + a_1 * x # Linear Equation

The motive of the linear regression algorithm is to find the best values for
a_0 and a_1. Before moving on to the algorithm, let’s have a look at two
important concepts you must know to better understand linear regression.

4.1.1 Cost Function:

The cost function helps us to figure out the best possible values for a_0
and a_1 which would provide the best fit line for the data points. Since we
want the best values for a_0 and a_1, we convert this search problem into
a minimization problem where we would like to minimize the error
between the predicted value and the actual value

We choose the above function to minimize. The difference between the
predicted values and ground truth measures the error difference. We
square the error difference and sum over all data points and divide that
value by the total number of data points. This provides the average
squared error over all the data points. Therefore, this cost function is also
known as the Mean Squared Error(MSE) function. Now, using this MSE

46

function we are going to change the values of a_0 and a_1 such that the
MSE value settles at the minima. Cost function optimizes the regression
coefficients or weights. It measures how a linear regression model is
performing. We can use the cost function to find the accuracy of
the mapping function, which maps the input variable to the output
variable. This mapping function is also known as Hypothesis function.

4.1.2 Gradient Descent:
The next important concept needed to understand linear regression is
gradient descent. Gradient descent is a method of updating a_0 and a_1 to
reduce the cost function(MSE). The idea is that we start with some values
for a_0 and a_1 and then we change these values iteratively to reduce the
cost. Gradient descent helps us on how to change the values. Gradient
descent is used to minimize the MSE by calculating the gradient of the
cost function. A regression model uses gradient descent to update the
coefficients of the line by reducing the cost function. It is done by a
random selection of values of coefficient and then iteratively update the
values to reach the minimum cost function.

Fig 4.2: Gradient Descent

To draw an analogy, imagine a pit in the shape of U and you are standing at
the topmost point in the pit and your objective is to reach the bottom of the
pit. There is a catch, you can only take a discrete number of steps to reach
the bottom. If you decide to take one step at a time you would eventually
reach the bottom of the pit but this would take a longer time. If you choose
to take longer steps each time, you would reach sooner but, there is a
chance that you could overshoot the bottom of the pit and not exactly at the
bottom. In the gradient descent algorithm, the number of steps you take is
the learning rate. This decides on how fast the algorithm converges to the
minima.

47

Fig 4.3: Convex and Non Convex

4.2 ASSESSING PERFORMANCE OF REGRESSION

In regression model, the most commonly known evaluation metrics
include:

1. Mean Absolute Error (MAE), like the RMSE, the MAE measures the
prediction error. Mathematically, it is the average absolute difference
between observed and predicted outcomes, MAE =
mean(abs(observeds - predicteds)). MAE is less sensitive to outliers
compared to RMSE.

2. Root Mean Squared Error (RMSE), which measures the average
error performed by the model in predicting the outcome for an
observation. Mathematically, the RMSE is the square root of the mean
squared error (MSE), which is the average squared difference between
the observed actual outome values and the values predicted by the
model. So, MSE = mean((observeds - predicteds)^2) and RMSE =
sqrt(MSE). The lower the RMSE, the better the model.

3. R-squared (R2), which is the proportion of variation in the outcome
that is explained by the predictor variables. In multiple regression
models, R2 corresponds to the squared correlation between the
observed outcome values and the predicted values by the model. The
Higher the R-squared, the better the model.

4. Residual Standard Error (RSE), also known as the model sigma, is a
variant of the RMSE adjusted for the number of predictors in the
model. The lower the RSE, the better the model. In practice, the
difference between RMSE and RSE is very small, particularly for
large multivariate data.

4.2.1 Mean Absolute Error (MAE):
It is the average absolute difference between observed and predicted
outcomes.

We defined the MAE as,

48

where yy is the actual value ŷ is the predicted value and |y−y^| is the
absolute value of the difference between the actual and predicted value. N
is the number of sample points.

For Example: Take a look at the following plot, which shows the number
of failures for a piece of machinery against the age of the machine:

In order to predict the number of failures from the age, we would want to
fit a regression line such as this:

In order to understand how well this line represents the actual data, we
need to measure how good a fit it is. We can do this by measuring the
distance from the actual data points to the line:

You may recall that these distances are called residuals or errors. The
mean size of these errors is the MAE. We can calculate it as follows:

49

here is how the table and formula relate:

The MAE has a big advantage in that the units of the MAE are the same
as the units of yy, the feature we want to predict. In the example above,
we have an MAE of 8.5, so it means that on average our predictions of the
number of machine failures are incorrect by 8.5 machine failures.

4.2.2 Root Mean Squared Error (RMSE):
It measures the average error performed by the model in predicting the
outcome for an observation. Its calculation is very similar to MAE, but
instead of taking the absolute value to get rid of the sign on the individual
errors, we square the error (because the square of a negative number is
positive).

The formula for RMSE is:

50

As with MAE, we can think of RMSE as being measured in the y
units. So the above error can be read as an error of 9.9 machine failures on
average per observation.

4.2.3 R-Squared:
It tells us the degree to which the model explains the variance in the data.
In other words how much better it is than just predicting the mean.

 A value of 1 indicates a perfect fit.

 A value of 0 indicates a model no better than the mean.

 A value less than 0 indicates a model worse than just predicting the
mean.

4.2.4 Residual Standard Error:
The residual standard error is √MSE. The MSE is an unbiased estimator
of σ2, where σ2=Var(y|x).

For example: Anova table of SLR/Simple Linear Regression (DF is
different for multiple regression):

4.3 OVERFITTING

Overfitting a model is a condition where a statistical model begins to
describe the random error in the data rather than the relationships between
variables. This problem occurs when the model is too complex.

51

In regression analysis, overfitting can produce misleading R-
squared values, regression coefficients, and p-values. In this post, I explain
how overfitting models is a problem and how you can identify and avoid
it. Overfit regression models have too many terms for the number of
observations. When this occurs, the regression coefficients represent the
noise rather than the genuine relationships in the population.

That’s problematic by itself. However, there is another problem.
Each sample has its own unique quirks. Consequently, a regression model
that becomes tailor-made to fit the random quirks of one sample is
unlikely to fit the random quirks of another sample. Thus, overfitting a
regression model reduces its generalizability outside the original dataset.

4.3.1 Graphical Illustration of Overfitting Regression Models:
The image below illustrates an overfit model. The green line represents the
true relationship between the variables. The random error inherent in the
data causes the data points to fall randomly around the green fit line. The
red line represents an overfit model. This model is too complex, and it
attempts to explain the random error present in the data.

Fig 4.4: Overfitting

The example above is very clear. However, it’s not always that obvious.
Below, the fitted line plot shows an overfit model. In the graph, it appears
that the model explains a good proportion of the dependent
variable variance.

Fig 4.5: Overfitting Line

52

4.3.2 Catalysts for Overfitting:
This concept is fairly intuitive. Suppose we have a total sample size of 20
and we need to estimate one population mean using a 1-sample t-test.
We’ll probably obtain a good estimate. However, if we want to use a 2-
sample t-test to estimate the means of two populations, it’s not as good
because we have only ten observations to estimate each mean. If we want
to estimate three or more means using one-way ANOVA, it becomes
pretty bad.

As the number of observations per estimate decreases (20, 10, 6.7, etc.),
the estimates become more erratic. Furthermore, a new sample is unlikely
to replicate the inconsistent estimates produced by the smaller sample
sizes.

In short, the quality of the estimates deteriorates as you draw more
conclusions from a sample. This idea is directly related to the degrees of
freedom in the analysis. To learn more about this concept, read my
post: Degrees of Freedom in Statistics.

4.3.3 Applying These Concepts to Overfitting Regression Models:
Overfitting a regression model is similar to the example above. The
problems occur when you try to estimate too many parameters from the
sample. Each term in the model forces the regression analysis to estimate
a parameter using a fixed sample size. Therefore, the size of your sample
restricts the number of terms that you can safely add to the model before
you obtain erratic estimates.

Similar to the example with the means, you need a sufficient number of
observations for each term in the regression model to help ensure
trustworthy results. Statisticians have conducted simulation studies* which
indicate you should have at least 10-15 observations for each term in a
linear model. The number of terms in a model is the sum of all the
independent variables, their interactions, and polynomial terms to model
curvature.

For instance, if the regression model has two independent variables and
their interaction term, you have three terms and need 30-45 observations.
Although, if the model has multicollinearity or if the effect size is small,
you might need more observations.

To obtain reliable results, you need a sample size that is large enough to
handle the model complexity that your study requires. If your study calls
for a complex model, you must collect a relatively large sample size. If the
sample is too small, you can’t dependably fit a model that approaches the
true model for your independent variable. In that case, the results can be
misleading.

53

4.3.4 How to Detect Overfit Models:
Linear regression, there is an excellent accelerated cross-validation
method called predicted R-squared. This method doesn’t require you to
collect a separate sample or partition your data, and you can obtain the
cross-validated results as you fit the model. Statistical software calculates
predicted R-squared using the following automated procedure:

 It removes a data point from the dataset.

 Calculates the regression equation.

 Evaluates how well the model predicts the missing observation.

 And, repeats this for all data points in the dataset.

Predicted R-squared has several cool features. First, you can just include it
in the output as you fit the model without any extra steps on your part.
Second, it’s easy to interpret. You simply compare predicted R-squared to
the regular R-squared and see if there is a big difference.

If there is a large discrepancy between the two values, your model doesn’t
predict new observations as well as it fits the original dataset. The results
are not generalizable, and there’s a good chance you’re overfitting the
model.

For the fitted line plot above, the model produces a predicted R-squared
(not shown) of 0%, which reveals the overfitting. For more information,
read my post about how to interpret predicted R-squared, which also
covers the model in the fitted line plot in more detail.`

4.3.5 How to Avoid Overfitting Models:
To avoid overfitting a regression model, you should draw a random
sample that is large enough to handle all of the terms that you expect to
include in your model. This process requires that you investigate similar
studies before you collect data. The goal is to identify relevant variables
and terms that you are likely to include in your own model. After you get a
sense of the typical complexity of models in your study area, you’ll be
able to estimate a good sample size.

4.4 CASE STUDY OF POLYNOMIAL REGRESSION

Polynomial Regression is a regression algorithm that models the
relationship between a dependent(y) and independent variable(x) as nth
degree polynomial. The Polynomial Regression equation is given below:

y= b0+b1x1+ b2x1
2+ b2x1

3+...... bnx1
n

 It is also called the special case of Multiple Linear Regression in ML.
Because we add some polynomial terms to the Multiple Linear
regression equation to convert it into Polynomial Regression.

 It is a linear model with some modification in order to increase the
accuracy.

54

 The dataset used in Polynomial regression for training is of non-linear
nature.

 It makes use of a linear regression model to fit the complicated and
non-linear functions and datasets.

 Hence, "In Polynomial regression, the original features are
converted into Polynomial features of required degree (2,3,..,n) and
then modeled using a linear model."

4.4.1 Need for Polynomial Regression:

 The need of Polynomial Regression in ML can be understood in the
below points:

 If we apply a linear model on a linear dataset, then it provides us a
good result as we have seen in Simple Linear Regression, but if we
apply the same model without any modification on a non-linear
dataset, then it will produce a drastic output. Due to which loss
function will increase, the error rate will be high, and accuracy will be
decreased.

 So for such cases, where data points are arranged in a non-linear
fashion, we need the Polynomial Regression model. We can
understand it in a better way using the below comparison diagram of
the linear dataset and non-linear dataset.

Fig 4.6: linear regression and polynomial model
 In the above figure, we have taken a dataset which is arranged non-

linearly. So if we try to cover it with a linear model, then we can
clearly see that it hardly covers any data point. On the other hand, a
curve is suitable to cover most of the data points, which is of the
Polynomial model.

 Hence, if the datasets are arranged in a non-linear fashion, then we
should use the Polynomial Regression model instead of Simple Linear
Regression.

4.4.2 Equation of the Polynomial Regression Model:

Simple Linear Regression equation:
y = b0+b1x(a)

55

Multiple Linear Regression equation:
y= b0+b1x+ b2x2+ b3x3+....+ bnxn(b)

Polynomial Regression equation:
y= b0+b1x + b2x

2+ b3x
3+....+ bnx

n(c)

When we compare the above three equations, we can clearly see that all
three equations are Polynomial equations but differ by the degree of
variables. The Simple and Multiple Linear equations are also Polynomial
equations with a single degree, and the Polynomial regression equation is
Linear equation with the nth degree. So if we add a degree to our linear
equations, then it will be converted into Polynomial Linear equations.

Here we will implement the Polynomial Regression using Python. We will
understand it by comparing Polynomial Regression model with the Simple
Linear Regression model. So first, let's understand the problem for which
we are going to build the model.

Problem Description: There is a Human Resource company, which is
going to hire a new candidate. The candidate has told his previous salary
160K per annum, and the HR have to check whether he is telling the truth
or bluff. So to identify this, they only have a dataset of his previous
company in which the salaries of the top 10 positions are mentioned with
their levels. By checking the dataset available, we have found that there is
a non-linear relationship between the Position levels and the salaries.
Our goal is to build a Bluffing detector regression model, so HR can hire
an honest candidate. Below are the steps to build such a model.

Steps for Polynomial Regression:
The main steps involved in Polynomial Regression are given below:

 Data Pre-processing

56

 Build a Linear Regression model and fit it to the dataset

 Build a Polynomial Regression model and fit it to the dataset

 Visualize the result for Linear Regression and Polynomial Regression
model.

 Predicting the output.

Data Pre-processing Step:
The data pre-processing step will remain the same as in previous
regression models, except for some changes. In the Polynomial Regression
model, we will not use feature scaling, and also we will not split our
dataset into training and test set. It has two reasons:

 The dataset contains very less information which is not suitable to
divide it into a test and training set, else our model will not be able to
find the correlations between the salaries and levels.

 In this model, we want very accurate predictions for salary, so the
model should have enough information.

The code for pre-processing step is given below:

importing libraries
import numpy as nm
import matplotlib.pyplot as mtp
import pandas as pd

#importing datasets
data_set= pd.read_csv('Position_Salaries.csv')
#Extracting Independent and dependent Variable

x= data_set.iloc[:, 1:2].values
y= data_set.iloc[:, 2].values

 In the above lines of code, we have imported the important Python
libraries to import dataset and operate on it.

 Next, we have imported the dataset 'Position_Salaries.csv', which
contains three columns (Position, Levels, and Salary), but we will
consider only two columns (Salary and Levels).

 After that, we have extracted the dependent(Y) and independent
variable(X) from the dataset. For x-variable, we have taken parameters
as [:,1:2], because we want 1 index(levels), and included :2 to make it
as a matrix.

57

Now, we will build and fit the Linear regression model to the dataset. In
building polynomial regression, we will take the Linear regression model
as reference and compare both the results. The code is given below:

1. #Fitting the Linear Regression to the dataset

2. from sklearn.linear_model import LinearRegression

3. lin_regs= LinearRegression()

4. lin_regs.fit(x,y)

In the above code, we have created the Simple Linear model
using lin_regs object of LinearRegression class and fitted it to the dataset
variables (x and y).

Output:
Out[5]: LinearRegression(copy_X=True, fit_intercept=True,
n_jobs=None, normalize=False)

Building the Polynomial regression model:
Now we will build the Polynomial Regression model, but it will be a little
different from the Simple Linear model. Because here we will
use PolynomialFeatures class of preprocessing library. We are using this
class to add some extra features to our dataset.

1. #Fitting the Polynomial regression to the dataset

2. from sklearn.preprocessing import PolynomialFeatures

3. poly_regs= PolynomialFeatures(degree= 2)

4. x_poly= poly_regs.fit_transform(x)

5. lin_reg_2 =LinearRegression()

6. lin_reg_2.fit(x_poly, y)

58

In the above lines of code, we have used poly_regs.fit_transform(x),
because first we are converting our feature matrix into polynomial feature
matrix, and then fitting it to the Polynomial regression model. The
parameter value(degree= 2) depends on our choice. We can choose it
according to our Polynomial features.

After executing the code, we will get another matrix x_poly, which can be
seen under the variable explorer option:

Output:

Out[11]: LinearRegression(copy_X=True, fit_intercept=True,
n_jobs=None, normalize=False)

Visualizing the result for Linear regression:

Now we will visualize the result for Linear regression model as we did in
Simple Linear Regression. Below is the code for it:

1. #Visulaizing the result for Linear Regression model

2. mtp.scatter(x,y,color="blue")

3. mtp.plot(x,lin_regs.predict(x), color="red")

4. mtp.title("Bluff detection model(Linear Regression)")

5. mtp.xlabel("Position Levels")

6. mtp.ylabel("Salary")

7. mtp.show()

59

Output:

In the above output image, we can clearly see that the regression line is so
far from the datasets. Predictions are in a red straight line, and blue points
are actual values. If we consider this output to predict the value of CEO, it
will give a salary of approx. 600000$, which is far away from the real
value.

Visualizing the result for Polynomial Regression:
Here we will visualize the result of Polynomial regression model, code for
which is little different from the above model.

Code for this is given below:

#Visulaizing the result for Polynomial Regression

mtp.scatter(x,y,color="blue")

mtp.plot(x, lin_reg_2.predict(poly_regs.fit_transform(x)), color="red")

mtp.title("Bluff detection model(Polynomial Regression)")

mtp.xlabel("Position Levels")

mtp.ylabel("Salary")

mtp.show()

In the above code, we have taken
lin_reg_2.predict(poly_regs.fit_transform(x), instead of x_poly, because
we want a Linear regressor object to predict the polynomial features
matrix.

Output:

60

As we can see in the above output image, the predictions are close to the
real values. The above plot will vary as we will change the degree.
For degree= 3:

If we change the degree=3, then we will give a more accurate plot, as
shown in the below image.

SO as we can see here in the above output image, the predicted salary for
level 6.5 is near to 170K$-190k$, which seems that future employee is
saying the truth about his salary.

Degree= 4: Let's again change the degree to 4, and now will get the most
accurate plot. Hence we can get more accurate results by increasing the
degree of Polynomial.

Predicting the final result with the Linear Regression model:
Now, we will predict the final output using the Linear regression model to
see whether an employee is saying truth or bluff. So, for this, we will use
the predict() method and will pass the value 6.5. Below is the code for it:

1. lin_pred = lin_regs.predict([[6.5]])

2. print(lin_pred)

61

Output:

[330378.78787879]

Predicting the final result with the Polynomial Regression model:

Now, we will predict the final output using the Polynomial Regression
model to compare with Linear model. Below is the code for it:

1. poly_pred = lin_reg_2.predict(poly_regs.fit_transform([[6.5]]))

2. print(poly_pred)

Output:

[158862.45265153]

SUMMARY

Regression analysis is a statistical technique for studying linear
relationships. It begins by supposing a general form for the
relationship, known as the regression model. The ultimate goal of the
regression algorithm is to plot a best-fit line or a curve between the
data. The three main metrics that are used for evaluating the trained
regression model are variance, bias and error. If the variance is high, it
leads to overfitting and when the bias is high, it leads to underfitting.
Based on the number of input features and output labels, regression is
classified as linear (one input and one output), multiple (many inputs
and one output) and multivariate (many outputs). Linear regression
allows us to plot a linear equation, i.e., a straight line. We need to tune
the coefficient and bias of the linear equation over the training data for
accurate predictions. The tuning of coefficient and bias is achieved
through gradient descent or a cost function — least squares method.
Learning a linear regression model means estimating the values of the
coefficients used in the representation with the data that we have
available.

UNIT END QUESTIONS

1. What is regression? Explain types of regression.

2. Give the illustration of regression performance.

3. Explain the methods used for regression analysis.

4. Write a note on R square method.

5. Write a note on Mean absolute error.

6. Explain Root mean square method with suitable example.

7. Discuss Polynomial Regression in detail.

62

References

 Peter Flach, Machine Learning The Art and Science of Algorithms that
Make Sense of Data, Cambridge Press, 2012

 https://towardsdatascience.com/introduction-to-machine-learning-
algorithms-linear-regression-14c4e325882a

 Baidaa M Alsafy, Zahoor Mosad, Wamidh k. Mutlag, Multiclass
Classification Methods: A Review, International Journal of Advanced
Engineering Technology and Innovative Science (IJAETIS), 2020.

 Dragos D. Margineantu, Class Probability Estimation and Cost-
Sensitive Classification Decisions, Inc Springer-Verlag Berlin
Heidelberg 2002

 https://www.educative.io/edpresso/what-is-linear-regression

63

5

THEORY OF GENERALIZATION

Unit Structure
5.0 Objectives

5.1 Effective number of hypothesis

5.2 Bounding the Growth function

5.3 VC Dimensions

5.4 Regularization theory

Summary

Unit End Questions

References

5.0 OBJECTIVES

A learning will learn:

 hyptothesis implementation

 to implement the regularization theory

 understand the VC dimensions in Machine learning.

5.1 EFFECTIVE NUMBER OF HYPOTHESIS

A hypothesis is an explanation for something. It is a provisional idea, an
educated guess that requires some evaluation. A good hypothesis is
testable; it can be either true or false. In science, a hypothesis must be
falsifiable, meaning that there exists a test whose outcome could mean that
the hypothesis is not true. The hypothesis must also be framed before the
outcome of the test is known.

Consider the regression estimation problem where X = Y = R and the data
are the following points:

Fig 5.1: regression estimation

64

where the dash-dot line represents are fairly complex model and fits the
data set perfectly, and the straight line does not completely “explain” the
data but seems to be a “simpler” model, if we argue that the residuals are
possibly measurement errors.

Statistical hypothesis tests are techniques used to calculate a critical
value called an “effect.” The critical value can then be interpreted in order
to determine how likely it is to observe the effect if a relationship does not
exist. If the likelihood is very small, then it suggests that the effect is
probably real. If the likelihood is large, then we may have observed a
statistical fluctuation, and the effect is probably not real. For example, we
may be interested in evaluating the relationship between the means of two
samples, e.g. whether the samples were drawn from the same distribution
or not, whether there is a difference between them.

One hypothesis is that there is no difference between the population
means, based on the data samples. This is a hypothesis of no effect and is
called the null hypothesis and we can use the statistical hypothesis test to
either reject this hypothesis, or fail to reject (retain) it. We don’t say
“accept” because the outcome is probabilistic and could still be wrong,
just with a very low probability.

5.1.1 Underfitting versus overfitting:
In the machine learning literature the more complex model is said to show
signs of overfitting, while the simpler model underfitting. Often several
heuristic are developed in order to avoid overfitting, for example, when
designing neural networks one may:

1. limit the number of hidden nodes (equivalent to reducing the number
of support vectors),

2. stop training early to avoid a perfect explanation of the training set,
and

3. apply weight decay to limit the size of the weights, and thus of the
function class implemented by the network (equivalent to the
regularization used in ridge regression).

5.1.2 Minimizing risk (expected loss):

The risk or expected loss (L) is defined as:

where St is a test set. This problem is intractable since we do not know
D(x, y) which is the probability distribution on X ×Y which governs the
data generation and underlying functional dependency.

65

The only thing we do have it our training set S sampled from the
distribution D and we can use this to approximate the above integral by
the finite sum:

5.2 BOUNDING THE GROWTH FUNCTION

We have considered the case when H is finite or countably infinite. In
practice, however, the function class H could be uncountable. Under this
situation, the previous method does not work. The key idea is to group
functions based on the sample. Given a sample Dn = {(x1, y1),...,(xn, yn)},
and define S = {x1, . . . , xn}. Consider the set HS = Hx1,...,xn =
{(h(x1),...,h(xn) : h ∈ H} . The size of this set is the total number of
possible ways that S = {x1, . . . , xn} can be classified. For binary
classification the cardinality of this set is always finite, no matter how
large H is.

The growth function is the maximum number of ways into which n points
can be classified by the function class:
GH(n) = sup |HS| .
x1,...,xn

Growth function can be thought as a measure of the “size” for the class of
functions H. Several facts about the growth function:

• When H is finite, we always have GH(n) ≤ |H| = m.

• Since h(x) ∈ {0, 1}, we have GH(n) ≤ 2n. If GH(n) = 2n, then there is
a set of n points such that the class of functions H can generate any
possible classification result on these points.

5.3 VC (VAPNIK-CHERVONENKIS) DIMENSIONS

The VC (Vapnik-Chervonenkis) dimension is a single parameter that
characterizes the growth function:

The VC dimension of a hypothesis set H, denoted by dVC(H), is the largest
value of m, for which ΠH(m) = 2m. If ΠH(m) = 2m, then dVC(H) = ∞.

66

To illustrate this definition, we will now take the examples for the growth
function to learn their VC-dimension.To find a lower bound we have to
simply find a set S that can be shattered by H. To give an upper bound, we
need to prove that no set S of d + 1 points exists, that can be shattered by
H, which is usually more difficult.

For Example, Positive rays: We have shown that the growth function for
positive rays isΠH(m) = m+1. Only for m=0 ,1 we have ΠH(m) = 2m,
therefore dVC(H)=1

Positive intervals:The growth function for positive intervals is, ΠH(m) =

m2 + m + .

We have ΠH(m) = 2m for m = 0,1,2 which yields dVC(H)=2.

Convex sets:We have seen that by arrange convex sets in the right way,
sets of every size can be shattered.ThereforeΠH(m) = 2m for all m
dVC(H)= ∞.

Perceptrons: The next example will be a bit more elaborate. We will
show that for the perceptron in Rdthe VC-dimension is always d + 1. We
won’t explicitly calculate the growth function ΠH(m) for all m.Therefore,
for determining the VC dimension dVC(H) = d + 1, we have to show that:

a) The VC dimension is at least d+1: To prove this, we have to find d
+ 1 points in the input space X = Rd that the perceptron can shatter. We
first consider the set of hyperplanes in R2 . We have already seen that any
three non-collinear points in R2 can be shattered by Perceptron. dVC(H) =
(hyperplanes in R2) = 3.If we now show the general case of hyperplanes
in Rd. We pick a set of d + 1 points inRd, setting x0 to be the origin and
defining xi , i∈ {1, ..., x}as the points whose i-th coordinate is 1 and all
others are 0.Let y0, ..., yn∈ {−1, +1} be an arbitrary set of labels for x0, x1,
...xd.Let wbe the vector whose ith coordinate is yi .The perceptron defined

by the hyperplane of equation w · x + = 0 is shatters x0, ..., xd because

for any i∈ {0, ..., d}:

sgn(w · xi +) = sgn(yi +).

Now we need to show that b) the VC-dimension is at most d + 1. This is a
bit trickier, because we have to show that there is no subset of more than d
+ 1 points that can be shattered by the perceptron. To prove this, we will
show that on any d + 2 points, there is a dichotomy that can not be realized
by the perceptron classifier.

Choose the points x1, ..., xd+2 at random. There are more points than
dimension, therefore we must have

67

i.e. one point is a linear combination of the rest of the points. This will
apply to any set of d + 2 points you choose. Also, some of the ai’s must be
nonzero, because the first coordinate of the xi’s is always one (see
definition of the perceptron, first coordinate is one to include the bias term
of the hyperplane into the form w · x).Now we show a dichotomy that
can’t be implemented: Consider the following dichotomy.Let y1, ..., yd+2

the labels of x1, ..., xd+2. Give xi with nonzero coefficient ai get the label
+1, give any label to the xi with ai = 0 and set yj = −1 as the label of xj .
Let w ∈ Rd + 1 be the weight vector to any hyperplane h. Now we have,

If yi = sgn(wT xi) = sgn(ai), then aiw
T xi> 0 for all 0 <i< d. Then

sgn(∑ wT xi> 0. However, we set yj =sgn(wTxj) = sgn(∑ wT xi)
< 0 that gives a contradiction. The dichotomy can’t be implemented on
any set of d+2 points by the perceptron classifier.

Combining both parts of the proof, we get: dVC(hyperplanes in Rd) = d +
1.Consider again the perceptron in the two-dimensional space. As shown
above, its VCdimension is three. The fact that no four points can be
shattered by H limits the number of the dichotomies that can be realized
significantly. We exploit that fact to get a bound

Fig 5.2: Construction of G1 and G2

for ΠH(m) for all m ∈ N. We will prove, that, if the VC-dimension for a
set of hypotheses is finite, then there is a polynomial that bounds ΠH(m)
for all values of m. If such a polynomial exists, and ΠH(m) can replace |H|
in above equation then the generalization error will go to zero as m → ∞.
The next result uses the VC-dimension to define a bound for the growth
function.

68

5.4 REGULARIZATION THEORY

Many strategies used in machine learning are explicitly designed to reduce
the test error, possibly at the expense of increased training error. In another
way we can say that any modification we make to a learning algorithm that
is intended to reduce its generalization error but not its training error is
regularization. Regularization is a technique used to reduce the errors by
fitting the function appropriately on the given training set and avoid
overfitting.

There are many regularization strategies. Some put extra constraints on a
machine learning model, such as adding restrictions on the parameter
values. Some add extra terms in the objective function that can be thought
of as corresponding to a soft constraint on the parameter values. These
strategies are collectively known as regularization.

In fact, developing more effective regularization strategies has been one of
the major research efforts in the machine learning field. Sometimes these
constraints and penalties are designed to encode specific kinds of prior
knowledge. Other times, these constraints and penalties are designed to
express a generic preference for a simpler model class in order to promote
generalization. Sometimes penalties and constraints are necessary to make
an underdetermined problem determined.

There are several form of regularizations by which we can prevent
overfitting in our network or machine learning model.

Parameter Norm Penalties:
Many regularization approaches are based on limiting the capacity of
models, such as neural networks, linear regression, or logistic regression,
by adding a parameter norm penalty Ω(θ) to the objective function J. We
denote the regularized objective function by J.

J(θ; X, y) = J(θ; X, y) + αΩ(θ) — {1}

where α ∈[0, ∞) is a hyperparameter that weights the relative contribution
of the norm penalty term, Ω, relative to the standard objective function J.
Setting α to zero results in no regularization. Larger values of α correspond
to more regularization.

We note that for neural networks, we typically choose to use a parameter
norm penalty Ω that penalizes only the weights of the affine transformation
at each layer and leaves the biases unregularized. The biases typically
require less data to fit accurately than the weights. Each weight
specifies how two variables interact. Fitting the weight well requires
observing both variables in a variety of conditions. Each bias controls only
a single variable. This means that we do not induce too much variance by
leaving the biases unregularized. Also, regularizing the bias parameters
can introduce a significant amount of underfitting. We therefore use the

69

vector w to indicate all the weights that should be affected by a norm
penalty, while the vector θ denotes all of the parameters, including
both w and the unregularized parameters.

Fig 5.3: Overfitting and Regularization

L² regularization: It is one of the commonly used regularization form. The
L² parameter norm penalty commonly known as weight decay. L²
regularization drives the weights closer to origin by adding a regularization
term Ω(θ) = 1/2||w||²₂ to the objective function. Such a model has
following total objective function:

J(w; X, y) =α/2(w`w) + J(w; X, y) (` means transpose)

The L² regularization has the intuitive interpretation of heavily penalizing
peaky weight vectors and preferring diffuse weight vectors. Due to
multiplicative interactions between weights and inputs this has the
appealing property of encouraging the network to use all of its inputs a
little rather that some of its inputs a lot.

Lastly, also notice that during gradient descent parameter update, using the
L² regularization ultimately means that every weight is decayed
linearly: W += -lambda * W towards zero. Let’s see what this means, We
can see that the addition of the weight decay term has modified the learning
rule to multiplicatively shrink the weight vector by a constant factor on
each step, just before performing the usual gradient update. This describes
what happens in a single step. But what happens over the entire course of
training? The L² regularization causes the learning algorithm to “perceive”
the input X as having higher variance, which makes it shrink the weights
on features whose covariance with the output target is low compared to this
added variance.

L¹ regularization: The L¹ regularization has the intriguing and fascinating
property that it leads the weight vectors to become sparse during
optimization (i.e. very close to exactly zero). In other words, neurons with
L¹ regularization end up using only a sparse subset of their most important
inputs as most weight goes very close to zero and become nearly invariant
to the “noisy” inputs. In comparison, final weight vectors from L²
regularization are usually diffuse, small numbers. The sparsity property
induced by L¹ regularization has been used extensively as a feature

70

selection mechanism. The L¹ penalty causes a subset of the weights to
become zero, suggesting that the corresponding features may safely be
discarded. In practice, if you are not concerned with explicit feature
selection, L² regularization can be expected to give superior performance
over L1.

Formally, L² regularization on the model parameter w is defined as

SUMMARY

We have derivated bounds for finite hypothesis sets. But in machine
learning, the hypothesis sets are usually infinite. We show that the
hypotheses in a hypothesis set H can be "similar" to each other and
therefore their "bad events" with poor generalization can overlap.
Therefore, we define the growth function, that formalizes the number of
"effective" hypotheses in a hypothesis set. The VC (Vapnik-Chervonenkis)
dimension is a single parameter that characterizes the growth function. A
regression model which uses L1 Regularization technique is
called LASSO(Least Absolute Shrinkage and Selection
Operator) regression. A regression model that uses L2
regularization technique is called Ridge regression. Lasso
Regression adds “absolute value of magnitude” of coefficient as penalty
term to the loss function(L).

UNIT END QUESTIONS

1. What is hypothesis? Explain different types of hypothesis.

2. Explain underfitting and overfitting with suitable example.

3. Explain the growth bounding function with suitable derivation.

4. Give the illustration of VC (Vapnik-Chervonenkis) Dimensions.

5. What is regularization? Explain its theory.

6. Explain L1 and L2 regularization with suitable example.

REFERENCES

 Peter Flach, Machine Learning The Art and Science of Algorithms that
Make Sense of Data, Cambridge Press, 2012.

 https://towardsdatascience.com/introduction-to-machine-learning-
algorithms-linear-regression-14c4e325882a

71

UNIT III

6

LINEAR MODELS

Unit Structure
6.0 Objective
6.1 Introduction Least Square Method

6.1.1 Definition:
6.1.2 Least square method graph
6.1.3 Least Square Method Formula
6.1.4 Advantages of Least Square method
6.1.5 Disadvantages of Least Square Method

6.2 Multivariate linear regression
6.2.1 Normal Equation
6.2.2 Examples
6.2.3 Steps for Multivariate Linear Regression

6.2.3.1 Normalizing Features
6.2.3.2 Select Loss function and Hypothesis
6.2.3.3 Set Hypothesis Parameters
6.2.3.4 Minimize the Loss Function
6.2.3.5 Test the hypothesis function
6.2.3.6 Multivariate Linear Regression model: Scalar Model

6.2.4 Advantages of Multivariate Regression
6.2.5 Disadvantages of Multivariate Regression

6.3 Regularization
6.3.1 Definition
6.3.2 Types of regularized regression
6.3.3 Ridge regression
6.3.4 Lasso Regression
6.3.5 Comparison between ridge regression and lasso regression

6.4 Least square regression for classification
6.4.1 Linear regression and least squares problem
6.4.2 Introduction
6.4.3 Non-Regularized Least Squares Problem
6.4.4 Regularized Least Squares Problem

6.5 Perceptron
6.5.1 Introduction
6.5.2 Types of Perceptron
6.5.3 Single layer Perceptron

6.5.3.1 Working of Single Layer Perceptron
6.5.3.2 Advantages:
6.5.3.3 Disadvantages:

6.5.4 Multi layer perceptron:
6.5.4.1 Neurons
6.5.4.2 Activation

72

6.5.4.3 Networks of Neurons
6.5.4.4 Input or Visible Layers
6.5.4.5 Hidden Layers
6.5.4.6 Output Layer
6.5.4.7 Stochastic Gradient Descent
6.5.4.8 Weight Updates
6.5.4.9 Prediction
6.5.4.10 Advantages:
6.5.4.11 Disadvantages:
Summary
Question
Reference

6.0 Objectives

The Objective for this chapter is to present the background and
mathematical function needed to construct a statistical model that
describes a particular scientific or engineering process. These types of
models can be used for prediction of process outputs, for calibration, or for
process optimization.

6.1 INRODUCTION LEAST SQUARE METHOD

The most widely used modeling method is Linear least squares regression.
It is what most people mean when they say they have used "regression",
"linear regression" or "least squares" to fit a model to their data. Not only
is linear least squares regression the most widely used modeling method,
but it has been adapted to a broad range of situations that are outside its
direct scope. It plays a strong underlying role in many other modeling
methods, including the other methods discussed in this section

6.1.1 Definition:
The process of finding the best-fitting curve for a set of data points by
reducing the sum of the squares of the offsets of the points from the curve
is called the least square method.

The method of least squares defines the solution for the minimization of
the sum of squares of errors in equation. to find the variation in observed
data we need to find the formula for sum of squares of errors. This method
is applied in data fitting. The result of this method is used to reduce the
sum of squared errors which are differences between the observed or
experimental value and corresponding fitted value given in the model.

The regression analysis is the process of finding the relation between two
variables, the trend of outcomes is estimated quantitatively. The method of
curve fitting is an approach to regression analysis. This method of fitting
equations which approximates the curves to given raw data is the least
squares.

73

If we add up all of the errors, the sum will be zero. So how do we measure
overall error? We use a little trick: we square the errors and find a line that
minimizes this sum of the squared errors.

Following are the basic categories of least-squares problems:

• Ordinary or linear least squares

• Nonlinear least squares

These depend upon linearity or nonlinearity of the errors. The linear
problems are often seen in regression analysis in statistics. On the other
hand, the non-linear problems are generally used in the iterative method of
refinement in which the model is approximated to the linear one with each
iteration.

Figure 1: Least square method graph

6.1.3 Formula:
The least-square method states that the curve that best fits a given set of
observations, is said to be a curve having a minimum sum of the squared
residuals (or deviations or errors) from the given data points. Let us
assume that the given points of data are (x1,y1), (x2,y2), (x3,y3), …,
(xn,yn) and fitting curve f(x) with d represents error or deviation from
each given point.

Now, we can write:

d1 = y1 − f(x1)
d2 = y2 − f(x2)
d3 = y3 − f(x3)

…..
dn = yn – f(xn)

74

The least-squares explain that the curve that best fits is represented by the
property that the sum of squares of all the deviations from given values
must be minimum. i.e:

6.1.4 Advantages of Least Square method:
1. This method is completely free from personal bias of the analyst as it

is very objective in nature.

2. This method provides us with a rate of growth per period.

6.1.5 Disadvantages of Least Square Method:
1. Sensitivity to outliers: One or two outliers can sometimes seriously

skew the results of a least-squares analysis.

2. Tendency to overfit data

6.2 MULTIVARIATE LINEAR REGRESSION (MLR)

The general multivariate regression model is a compact way of writing
several multiple linear regression models simultaneously. In that sense it is
not a separate statistical linear model. The various multiple linear
regression models may be compactly written as follows
6.2.1 Normal Equation
Y=XB+U

Where,

Y is a matrix with series of multivariate measurements

X is a matrix of observations on independent variables

75

B is a matrix containing parameters that are usually to be estimated and

U is a matrix containing errors i.e. noise.

In multivariate linear regression, the focus is on selecting the best possible
independent variables that contribute well to the dependent variable.

1. create a correlation matrix for all the independent variables and the
dependent variable from the observed data.

2. The correlation value gives us an idea about which variable is
significant and by what factor.

3. Low value of correlation between two independent variables shows
low overlap between the respective variables and high value points
towards high overlap.

4. If two variables highly overlap each other then their contribution in
minimizing the loss function is the same therefore making the
contribution of one of the layers redundant.

This method can get complicated when there are large no. of independent
features that have significant contribution in deciding our dependent
variable. Multivariate regression is a technique that estimates a single
regression model with more than one outcome variable.

6.2.2 Example:
Alice and Bob are planning to buy a new home. Nancy has mentioned a
rate for the home they like, but they want a method to verify it. All they
have got is the data set of size M house price and 3 feature counts (no.of
bedrooms, size of home in sq mtrs and age of the home). Bob has decided
to use his statistical data processing experience from his previous job and
do a multivariate linear regression. If B,S,A are the parameter values of
the house they like and P is the price mentioned by Nancy, help Bob
decide if they are being cheated or not. (If the price mentioned by Nancy -
expected price ≥ 2000 dollars - then they are being cheated)

Input format

Line 1: M value
Next M lines contain 4 values separated by spaces
Line 2 to m+1: Bi Si Ai Pi
Line m+2: B S A (features of their future home)
Line m+3: P (price mentioned by Nancy)
Output format

Pexp C
Pexp is expected price of their home and C is a binary value (0: being
cheated, 1: not cheated

76

The general linear model incorporates a number of different statistical
models: ANOVA, ANCOVA, MANOVA, MANCOVA, ordinary linear
regression, t-test and F-test. The general linear model is a generalization of
multiple linear regression to the case of more than one dependent variable.
If Y, B, and U were column vectors, the matrix equation above would
represent multiple linear regression.

6.2.3 Steps for Multivariate Linear Regression:
Steps involved for Multivariate regression analysis are 1) feature selection,
2) normalizing the features, 3) selecting the loss function 4) hypothesis,
setting hypothesis parameters, 5) minimizing the loss function, 6) testing
the hypothesis, and 7) generating the regression model.

6.2.3.1 Normalizing Features:
We need to scale the features as it maintains general distribution and ratios
in data. This will lead to an efficient analysis. The value of each feature
can also be changed.

6.2.3.2 Select Loss function and Hypothesis:
The loss function predicts whenever there is an error. Meaning, when the
hypothesis prediction deviates from actual values. Here, the hypothesis is
the predicted value from the feature/variable.

6.2.3.3 Set Hypothesis Parameters:
The hypothesis parameter needs to be set in such a way that it reduces the
loss function and predicts well.

6.2.3.4 Minimize the Loss Function:
The loss function needs to be minimized by using a loss minimization
algorithm on the dataset, which will help in adjusting hypothesis
parameters. After the loss is minimized, it can be used for further action.
Gradient descent is one of the algorithms commonly used for loss
minimization.

6.2.3.5 Test the hypothesis function:
The hypothesis function needs to be checked on as well, as it is predicting
values. Once this is done, it has to be tested on test data.
6.2.3.6 Multivariate Linear Regression model: Scalar Model
It has the following form

77

For i € {1,….,n} and k € {1,…..,m}
Where,

is the kth real valued response for ith observation

is the regression intercept for the kth response

is the jth predictor’s regression slope for kth response

is the jth predictor for ith response

is a multivariate Gaussian error vector.

6.2.4 Advantages:

1. MLR is it helps us to understand the relationships among variables
present in the dataset.

2. MLR is a widely used machine learning algorithm.

6.2.5 Disadvantages:
1. This Technique are a bit complex and require a high-levels of

mathematical calculation.

2. MLR model’s output is not easy to interpret
3. MLR model does not have much scope for smaller datasets.

6.3 REGULARIZATION

6.3.1 Definition:
The type of regression where the coefficient estimates are constrained to
zero is called Regularization. The magnitude (size) of coefficients, and
error term, are penalized.

Formula:

Here Y represents the learned relation
β represents the coefficient estimates for different variables or
predictors(X).

78

The Model fitting procedure involves a loss function, known as residual
sum of squares(RSS). The coefficients are chosen, such that they minimize
this loss function.

Now, this will adjust the coefficients based on your training data. If there
is noise in the training data, then the estimated coefficients will not give
efficient results. This is where regularization comes in and regularizes
these learned estimates towards zero.

6.3.2 Types of regularized regression:
1. Ridge regression is a way to create a sparing model when the number

of predictor variables in a set are more than the number of
observations.

2. Least Absolute Shrinkage and Selection Operator (LASSO)
regression is a type of linear regression that uses shrinkage.
Shrinkage is where data values are shrunk towards a central point, like
the mean.

6.3.3 Ridge regression:
It is a technique that is implemented by adding bias to a multilinear
regression model to expect a much more accurate regression with tested
data.

The general equation of a best-fit line for multilinear regression is

y = β0 + β1x1 + β2x2 + ··· βkxk

where y is the output variable and x1,x2…xk are predictor variables.
The penalty term for ridge regression is λ(slope) ², where lambda denotes
the degree of deflection from the original curve by restricting the
coefficients of predictor variables but never makes them zero.

Therefore the equation for ridge regression is

y = β0 + β1x1 + β2x2 + ··· βkxk + λ(slope) ²

Above function shows ridge regression, where the RSS is modified by
adding the shrinkage quantity. Now, the coefficients are estimated by
minimizing this function. Here, λ is the tuning parameter that decides how
much we want to penalize the flexibility of our model. The increase in
flexibility of a model is represented by an increase in its coefficients, and

79

if we want to minimize the above function, then these coefficients need to
be small. This is how the Ridge regression technique prevents coefficients
from rising too high.

6.3.4 Lasso Regression:
Lasso regression is much similar to ridge regression but only differs in the
penalty term. The penalty for lasso regression is λ|slope|.
Lasso regression can even eliminate the variables by making their
coefficients to zero thus removing the variables that have high covariance
with other predictor variables.

The equation for lasso regression is

y = β0 + β1x1 + β2x2 + ··· βkxk + λ|slope|

Lasso is another variation, in which the above function is minimized. It's
clear that this variation differs from ridge regression only in penalizing the
high coefficients. It uses |βj|(modulus)instead of squares of β, as its
penalty. In statistics, this is known as the L1 norm.

6.3.5 Comparison between ridge regression and lasso regression:
According to the above formulation, the ridge regression is expressed by
β1² + β2² ≤ s. This implies that ridge regression coefficients have the
smallest RSS for all points that lie within the circle given by β1² + β2² ≤ s.
Similarly, for lasso, the equation becomes,|β1|+|β2|≤ s. This implies that
lasso coefficients have the smallest RSS for all points that lie within the
diamond given by |β1|+|β2|≤ s.

Comparison of lasso and ridge with the linear regression model, we get:

Figure2: Comparison of lasso and ridge with the linear
regression model

Note: All the three plots must pass through a single point that is (x̄, ȳ),
where x̄ is the mean of predictor variables and ȳ is the mean of the output
variable.

80

6.4 LEAST SQUARE REGRESSION FOR
CLASSIFICATION

Regression and classification are basic in learning. In regression, the
output variable takes continuous values, while in classification, the output
variable takes class labels.

6.4.1 Linear regression and least squares problem:
The linear regression is similar to linear least squares problem and can be
used for classification problems appearing in machine learning algorithms.
We will revise the solution of the linear least squares problem in terms of
linear regression.

The simplest linear model for regression is
f(x,ω)=ω0⋅1+ω1x1+...+ωMxM.

Here, ω={ωi},i=0,...,M are weights with bias parameter ω0, {xi},i=1,...,M
are training examples. Target values (known data) are {ti},i=1,...,N which
correspond to {xi},i=1,...,M. Here, M is the number of weights and N is
the number of data points.

6.4.2 Introduction:
Each set consists of sample data points repressing two classes. One of the
sets represents a linearly-separable classification problem, and the other
set is for a non-linearly separable problem. To use the Least Squares
Regression to solve a classification problem, a simple trick is used. The
data points of the first and second classes are extended by adding a new
extra dimension. This produces an augmented cloud of points in n+1
dimensional space, where n is the size of the original data space. In that
extra dimension, the data points belonging to the first and second classes
take values of -1 and +1 respectively.

Figure 3: Least square methods to classify linear data from different
points of view

Figure 3 shows the decision boundary of classifying linear data from
different point of views, and figure 2 shows the same for the wave-alike
data, where misclassified samples are circled in red. In such 2D data
points case, the decision boundary is the intersection of the fitted

81

polynomial and the horizontal plane passing by z=0 (z is the extra
dimension here).

Figure 4: Least square models to classify wave-alike data from
different points of view, misclassified samples are circled in red.

For classification accuracy, we use the Minimum Correct Classification
Rate (MCCR). MCCR is defined as the minimum of CCR1 and CCR2.
CCRn is the ratio of the correctly classified test points in class n divided
by the total number of test points in class n.

6.4.3 Non-regularized Least Squares Problem:
In non-regularized linear regression or least squares problem the goal is to
minimize the sum of squares

E(ω)=12N∑n=1(tn−f(x,ω))2=12N∑n=1(tn−ωTφ(xn))2:=12∥t−ωTφ(x)∥22

to find

minωE(ω)=minω12∥t−ωTφ(x)∥22.

with the residual r(ω)=t−ωTφ(x). The test functions φ(x) form the design
matrix A and the regression problem (or the least squares problem) is
written as:

minω12∥r(ω)∥22=minω12∥Aω−t∥22,

where A is of the size N×M with N>M, t is the target vector of the size N,
and ω is vector of weights of the size M.

6.4.4 Regularized Least Squares Problem:
Let now the matrix A will have entries aij=ϕj(xi),i=1,...,N;j=1,...,M.
Recall, that functions ϕj(x),j=0,...,M are called basis functions which
should be chosen and are known. Then the regularized least squares
problem takes the form

minω12∥r(ω)∥22+γ2∥ω∥22=minω12∥Aω−t∥22+γ2∥ω∥22.

To minimize the regularized squared errors we have to derive the normal
equations. Similarly as the Fréchet derivative for the non-regularized

82

regression problem, we look for the ω where the gradient
of 12||Aω−t||22+γ2∥ω∥22=12(Aω−t)T(Aω−t)+γ2ωTω vanishes. In other
words, we consider

12lim∥e∥→0(A(ω+e)−t)T(A(ω+e)−t)−(Aω−t)T(Aω−t)||e||2+lim∥e∥→0γ2(
ω+e)T(ω+e)−γ2ωTω||e||2

We finally get
0=lim∥e∥→0eT(ATAω−ATt)||e||2+γeTω||e||2

The expression above means that the factor ATAω−ATt+γω must also be
zero, or

(ATA+γI)ω=Att

6.5 PERCEPTRON

6.5.1 Introduction:
The perceptron is an algorithm for supervised learning of binary
classifiers. A binary classifier is a function which can decide whether
input, represented by a vector of numbers, belongs to some specific class.
It is a type of linear classifier, i.e. a classification algorithm that makes its
predictions based on a linear predictor function combining a set of weights
with the feature vector. The perceptron algorithm was invented in 1958 at
the Cornell Aeronautical Laboratory by Frank Rosenblatt.

Figure5: Perceptron model

6.5.2 Types of Perceptron:

There are two types of Perceptrons: Single layer and Multilayer.

1. Single layer - Single layer perceptrons can learn only linearly
separable patterns

2. Multilayer - Multilayer perceptrons or feedforward neural networks
with two or more layers have the greater processing power

6.5.3 Single layer Perceptron:
It is the first and basic model of the artificial neural networks. It is also
called the feed-forward neural network. Single layer perceptrons can learn

83

only linearly separable patterns The working of the single-layer perceptron
(SLP) is based on the threshold transfer between the nodes. This is the
simplest form of ANN and it is generally used in the linearly based cases
for the machine learning problems.

6.5.3.1 Working of Single Layer Perceptron:

Figure 6: Single layer Perceptron
● In a single layer perceptron, the weights to each input node are

assigned randomly since there is no a priori knowledge associated
with the nodes.

● Now SLP sums all the weights which are inputted and if the sums are
is above the threshold then the network is activated.

● If the calculated value is matched with the desired value, then the
model is successful

● If it is not, then since there is no back-propagation technique involved
in this the error needs to be calculated using the below formula and
the weights need to be adjusted again.

6.5.3.1 Advantages:

1. Single Layer Perceptron is quite easy to set up and train.

2. The neural network model can be explicitly linked to statistical
models

3. The SLP outputs a function which is a sigmoid and that sigmoid
function can easily be linked to posterior probabilities.

4. We can interpret and input the output as well since the outputs are the
weighted sum of inputs.

6.5.3.2 Disadvantages:

1. This neural network can represent only a limited set of functions.

2. The decision boundaries that are the threshold boundaries are only
allowed to be hyperplanes.

3. This model only works for the linearly separable data.

84

6.5.4 Multi layer perceptron:
A multilayer perceptron (MLP) is a class of feedforward artificial neural
network (ANN). The term MLP is used ambiguously, sometimes loosely
to any feedforward ANN, sometimes strictly to refer to networks
composed of multiple layers of perceptrons (with threshold activation).

An MLP consists of at least three layers of nodes: 1) an input layer, 2) a
hidden layer and 3) an output layer. Except for the input nodes, each node
is a neuron that uses a nonlinear activation function. MLP utilizes a
supervised learning technique called backpropagation for training. Its
multiple layers and non-linear activation distinguish MLP from a linear
perceptron. It can distinguish data that is not linearly separable.

Figure 7: Multilayer Perceptron

Following are the building blocks of perceptron

1. Neurons

2. Activation

3. Networks of Neurons

4. Input or Visible Layers

5. Hidden Layers

6. Output Layer

6.5.4.1 Neurons:
The building block for neural networks is artificial neurons.

These are simple computational units that have weighted input signals and
produce an output signal using an activation function.

Figure 8: Artificial Neurons

85

You may be familiar with linear regression, in which case the weights on
the inputs are very much like the coefficients used in a regression
equation. Like linear regression, each neuron also has a bias which can be
thought of as an input that always has the value 1.0 and it too must be
weighted.

6.5.4.2 Activation:
The weighted inputs are summed and passed through an activation
function, sometimes called a transfer function. Traditionally non-linear
activation functions are used. This allows the network to combine the
inputs in more complex ways and in turn provide a richer capability in the
functions they can model. Non-linear functions like the logistic also called
the sigmoid function were used that output a value between 0 and 1 with
an s-shaped distribution, and the hyperbolic tangent function also called
tanh that outputs the same distribution over the range -1 to +1. More
recently the rectifier activation function has been shown to provide better
results

6.5.4.3 Networks of Neurons:
Neurons are arranged into networks of neurons. A row of neurons is called
a layer and one network can have multiple layers. The architecture of the
neurons in the network is often called the network topology.

Figure 9: Networks of Neurons

6.5.4.4 Input or Visible Layers:
The bottom layer that takes input from your dataset is called the visible
layer, because it is the exposed part of the network. Often a neural network
is drawn with a visible layer with one neuron per input value or column in
your dataset. These are not neurons as described above, but simply pass
the input value though to the next layer.

6.5.4.5 Hidden Layers:
Layers after the input layer are called hidden layers because that are not
directly exposed to the input. The simplest network structure is to have a
single neuron in the hidden layer that directly outputs the value.

Given increases in computing power and efficient libraries, very deep
neural networks can be constructed. Deep learning can refer to having
many hidden layers in your neural network. They are deep because they
would have been unimaginably slow to train historically, but may take
seconds or minutes to train using modern techniques and hardware.

86

6.5.4.6 Output Layer:
The final hidden layer is called the output layer and it is responsible for
outputting a value or vector of values that correspond to the format
required for the problem.

The choice of activation function in he output layer is strongly constrained
by the type of problem that you are modeling.

For example:

1. A regression problem may have a single output neuron and the neuron
may have no activation function.

2. A binary classification problem may have a single output neuron and
use a sigmoid activation function to output a value between 0 and 1 to
represent the probability of predicting a value for the class 1.

3. A multi-class classification problem may have multiple neurons in the
output layer, one for each class (e.g. three neurons for the three
classes in the famous iris flowers classification problem).

6.5.4.7 Stochastic Gradient Descent:
The classical and still preferred training algorithm for neural networks is
called stochastic gradient descent. This is where one row of data is
exposed to the network at a time as input. The network processes the input
upward activating neurons as it goes to finally produce an output value.
This is called a forward pass on the network. It is the type of pass that is
also used after the network is trained in order to make predictions on new
data.

The process is repeated for all of the examples in your training data. One
round of updating the network for the entire training dataset is called an
epoch. A network may be trained for tens, hundreds or many thousands of
epochs.

6.5.4.8 Weight Updates:
The weights in the network can be updated from the errors calculated for
each training example and this is called online learning. It can result in fast
but also chaotic changes to the network.

Alternatively, the errors can be saved up across all of the training
examples and the network can be updated at the end. This is called batch
learning and is often more stable.

Typically, because datasets are so large and because of computational
efficiencies, the size of the batch, the number of examples the network is
shown before an update is often reduced to a small number, such as tens or
hundreds of examples.

87

6.5.4.9 Prediction:
Once a neural network has been trained it can be used to make predictions.
You can make predictions on test or validation data in order to estimate
the skill of the model on unseen data. You can also deploy it operationally
and use it to make predictions continuously.

An MLP is a network of simple neurons called perceptrons. The basic
concept of a single perceptron was introduced by Rosenblatt in 1958. The
perceptron computes a single output from multiple real-valued inputs by
forming a linear combination according to its input weights and then
possibly putting the output through some nonlinear activation function.
Mathematically this can be written as

where W denotes the vector of weights, X is the vector of inputs, b is the
bias and φ is the activation function. A signal-flow graph of this operation
is shown in Figure given below

6.5.4.10 Advantages:
● Can be applied to complex non-linear problem

● Works well with large input data

● Provides quick prediction after training

● The same accuracy can be achieved even with smaller data

6.5.4.11 Disadvantages:
● It is not known to what extent each independent variable is affected

by the dependent variable.

● Computations are difficult and time consuming

● The proper functioning of the model depends on the quality of
training

SUMMARY

This chapter gives a breakdown of linear regression model. Regression
analysis is one of the first modeling techniques to learn as a data scientist.
It can helpful when forecasting continuous values, e.g., sales, temperature.
There are quite a few formulas to learn but they are necessary to
understand when we run linear regression models. As you saw above there
are many ways to check the assumptions of linear regression like Least
Squares method, Multivariate Linear Regression, Regularized Regression,
Using Least Square regression for Classification. Also we saw Perceptron
that classifies patterns and groups by finding the linear separation between
different objects and patterns that are received through numeric or visual
input.

88

UNIT END QUESTIONS

 Least Square method:
1. Explain least square method and its limitations.

2. Explain the types of least square method.

3. What is the difference between Linear and non- linear least square
method?

4. Solve the following using least square method.

 Multivariate Linear Regression:
1. Explain Multivariate linear regression with an example.

2. What are the steps for Multivariate Linear regression?

 Regularized Regression:
1. Explain Regularized regression.

2. What are the types of regularized regression?

3. Give comparison of Lasso and Ridge with linear regrrssion model.

 Using Least Square Regression for classification:
1. Explain the use of least square regression for classification.
 Perceptron
1. Explain perceptron algorithm.
2. Explain the types of perceptron algorithms
3. Explain the working of single layer perceptron.
4. Explain Single layer perceptron with advantages and disadvantages.
5. Explain Multilayer perceptron with advantages and disadvantages.

REFERENCE

 Bevans, R. (2020, October 26). Simple Linear Regression: An Easy
Introduction & Examples. Retrieved
from https://www.scribbr.com/statistics/simple-linear-regression/

 Bevans, R. (2020, October 26). Multiple Linear Regression: A Quick
and Simple Guide. Retrieved
from https://www.scribbr.com/statistics/multiple-linear-regression/

 International Encyclopedia of the Social Sciences. . Encyclopedia.com.
16 Oct. 2020 . (2020, November 27). Retrieved
from https://www.encyclopedia.com/social-sciences/applied-and-
social-sciences-magazines/ordinary-least-squares-regression

89

 Jcf2d, W. B. (n.d.). University of Virginia Library Research Data
Services Sciences. Retrieved
from https://data.library.virginia.edu/understanding-q-q-plots/

 Stephanie. (2020, September 16). Q Q Plots: Simple Definition &
Example. Retrieved from https://www.statisticshowto.com/q-q-plots/

 Assumptions of Linear Regression. (2020, June 22). Retrieved
from https://www.statisticssolutions.com/assumptions-of-linear-
regression/

90

7:

SUPPORT VECTOR MACHINE

Unit Structure
7.0 Objective

7.1 Support Vector Machines
7.1.1 Definition

7.1.2 Hyperplane and Support Vectors:

7.1.2.1 Hyperplane:

7.1.2.2 Support Vectors:

7.1.3 Types of SVM

7.1.4 Working of SVM

7.1.4.1 Linear SVM:

7.1.4.2 Non-linear SVM:

7.2 Soft Margin SVM
7.2.1 What Soft Margin does is

7.2.2 Better of soft margin

7.2.3 Degree of tolerance

7.2.4 Formulation

7.3 Linear Classifiers
7.3.1 Regularized Discriminant Analysis

7.3.2 Linear Discriminant Analysis

7.3.3 Quadratic Discriminant Analysis

7.3.4 Logistic Regression

7.4 Kernel Functions in Non-linear Classification 39

7.4.1 Kernel Functions

7.4.2 Kernel Composition Rules

7.4.3 Radial Basis Kernel

7.4.4 Kernel in Action

Summary
Unit End Question
Reference

7.0 OBJECTIVES

Objective: Support Vector Machine is a linear model for classification and
regression problems. It can solve linear and non-linear problems and work
well for many practical problems. Through this chapter we are exhibiting
SVM model.

91

7.1 INTRODUCTION SUPPORT VECTOR MACHINES

7.1.1 Definition:
Support Vector Machine (SVM) is one of the most popular Supervised
Learning algorithms, which is used for Classification as well as
Regression problems. Mainly it is used for Classification problems in
Machine Learning.

The goal of the SVM algorithm is to create the best line or decision
boundary that can segregate n-dimensional space into classes so that we
can easily put the new data point in the correct category in the future. This
best decision boundary is called a hyperplane. SVM chooses the extreme
points/vectors that help in creating the hyperplane. These extreme cases
are called support vectors, and hence the algorithm is termed as Support
Vector Machine. Consider the below diagram in which there are two
different categories that are classified using a decision boundary or
hyperplane:

Figure 10: Decision boundary or hyperplane
7.1.2 Hyperplane and Support Vectors:
7.1.2.1 Hyperplane:
There can be multiple lines/decision boundaries to segregate the classes in
n-dimensional space, but we need to find out the best decision boundary
that helps to classify the data points. This best boundary is known as the
hyperplane of SVM.

7.1.2.2 Support Vectors:
The data points or vectors that are the closest to the hyperplane and which
affect the position of the hyperplane are termed as Support Vectors.
These vectors support the hyperplane, hence called a Support vector.

92

7.1.3 Types of SVM:

SVM can be of two types:

1. Linear SVM: Linear SVM is used for linearly separable data, which
means if a dataset can be classified into two classes by using a single
straight line, then such data is termed as linearly separable data, and
classifier is used called as Linear SVM classifier.

2. Non-linear SVM: Non-Linear SVM is used for non-linearly
separated data, which means if a dataset cannot be classified by using
a straight line, then such data is termed as non-linear data and
classifier used is called as Non-linear SVM classifier.

7.1.4 Working of SVM:
7.1.4.1 Linear SVM:
Suppose we have a dataset that has two tags (green and blue), and the
dataset has two features x1 and x2. We want a classifier that can classify
the pair(x1, x2) of coordinates in either green or blue. Consider the below
image:

Figure 11: Linear SVM

So as it is 2-d space so by just using a straight line, we can easily separate
these two classes. But there can be multiple lines that can separate these
classes

.
Figure 12: Separated classes

93

Hence, the SVM algorithm helps to find the best line or decision
boundary; this best boundary or region is called a hyperplane. SVM
algorithm finds the closest point of the lines from both the classes. These
points are called support vectors. The distance between the vectors and the
hyperplane is called the margin. And the goal of SVM is to maximize this
margin. The hyperplane with maximum margin is called the optimal
hyperplane.

Figure 13: Optimal hyperplane

7.1.4.2 Non-linear SVM:
For non-linear data, we cannot separate by drawing a single straight line.
Consider the below image:

Figure 14: Non Linear SVM

So to separate these data points, we need to add one more dimension. For
linear data, we have used two dimensions x and y, so for non-linear data,
we will add a third dimension z. It can be calculated as:

94

z=x2 +y2

Figure 15: Third dimension z
So now, SVM will divide the datasets into classes in the following way.

Figure 16: SVM divide dataset in classes
Since we are in 3-d Space, hence it is looking like a plane parallel to the x-
axis. If we convert it in 2d space with z=1, then it will become as:

Figure 17: Best Hyperplane

95

Hence we get a circumference of radius 1 in case of non-linear data.

7.2 SOFT MARGIN SVM

7.2.1 What Soft Margin does is:

1. it tolerates a few dots to get misclassified

2. it tries to balance the trade-off between finding a line that maximizes
the margin and minimizes the misclassification.

This idea is based on a simple premise: allow SVM to make a certain
number of mistakes and keep the margin as wide as possible so that other
points can still be classified correctly. This can be done simply by
modifying the objective of SVM. The main idea behind the support vector
classifier is to find a decision boundary with a maximum width that can
classify the two classes. Maximum margin classifiers are super sensitive to
outliers in the training data and that makes them pretty lame. Choosing a
threshold that allows misclassifications is an example of the Bias-Variance
tradeoff that plagues all the machine learning algorithms. When we allow
some misclassifications (slack variables), the distance between the
observations and the threshold is called a “soft margin”.

This idea is based on a simple premise: allow SVM to make a certain
number of mistakes and keep the margin as wide as possible so that other
points can still be classified correctly. This can be done simply by
modifying the objective of SVM.

7.2.2 Better soft margin:
We use cross-validation to determine how many misclassifications and
observations to allow inside of the soft margin to get the best
classification.

The name support vector classifier comes from the fact that the
observations on the edge that helps us to draw the margin are called
support vectors.

7.2.3 Degree of tolerance
How much tolerance we want to set when finding the decision boundary is
an important hyper-parameter for the SVM.

7.2.4 Formulation

● Almost all real-world applications have data that is linearly
inseparable.

● In some cases where the data is linearly separable, we might not want
to choose a decision boundary that perfectly separates the data to
avoid overfitting. For example, consider the following diagram:

96

Figure 18: Better decision boundary

Here the red decision boundary perfectly separates all the training points.
However, is it really a good idea to have a decision boundary with such
less margin The green decision boundary has a wider margin that would
allow it to generalize well on unseen data. In that sense, soft margin
formulation would also help in avoiding the overfitting problem.

Let us see how we can modify our objective to achieve the desired
behavior. In this new setting, we would aim to minimize the following
objective:

…Equation 1

Here, C is a hyperparameter that decides the trade-off between
maximizing the margin and minimizing the mistakes. When C is small,
classification mistakes are given less importance and focus is more on
maximizing the margin, whereas when C is large, the focus is more on
avoiding misclassification at the expense of keeping the margin small.

Let’s see how this could be incorporated with the help of the following
diagram.

Figure 19: Avoiding Misclassification

Figure 19: The penalty incurred by data points for being on the wrong side
of the decision boundary

97

The idea is: for every data point x_i, we introduce a slack variable ξ_i. The
value of ξ_i is the distance of x_i from the corresponding class’s margin if
x_i is on the wrong side of the margin, otherwise zero. Thus the points that
are far away from the margin on the wrong side would get more penalty.

With this idea, each data point x_i needs to satisfy the following
constraint:

……..Equation 2

Here, the left-hand side of the inequality could be thought of as the
confidence of classification.

7.3 LINEAR CLASSIFIERS

Solving classification tasks are based on linear models. What this means is
that they aim at dividing the feature space into a collection of regions
labeled according to the values the target can take, where the decision
boundaries between those regions are linear: they are lines in 2D, planes in
3D, and hyperplanes with more features.

Some of linear classifier techniques include:

1. Regularized Discriminant Analysis

2. Quadratic Discriminant Analysis

3. Linear Discriminant Analysis

4. Logistic Regression

7.3.1 Regularized Discriminant Analysis:
Like linear models for regression can be regularized to improve accuracy,
so can linear classifiers. One can introduce a shrinking parameter α that
shrinks the separate covariance matrices of QDA towards a common LDA
matrix:

The shrinkage parameter can take values from 0 (LDA) to 1 (QDA) and
any value in between is a compromise between the two approaches. The
best value of α can be chosen based on cross-validation. To do this in
Python, we need to pass the shrinkage argument to the LDA function, as
well as specify the computation algorithm to be least squares, as other
computation methods do not support shrinkage.

7.3.2 Linear Discriminant Analysis:
The method to be discussed is the Linear Discriminant Analysis (LDA). It
assumes that the joint density of all features, conditional on the target's

98

class, is a multivariate Gaussian. This means that the density P of the
features X, given the target y is in class k, are assumed to be given by

where d is the number of features, μ is a mean vector, and Σ_k the
covariance matrix of the Gaussian density for class k.

The decision boundary between two classes, say k and l, is the hyperplane
on which the probability of belonging to either class is the same. This
implies that, on this hyperplane, the difference between the two densities
should be zero.

7.3.3 Quadratic Discriminant Analysis:
This performs a quadratic discriminant analysis (QDA). QDA is closely
related to linear discriminant analysis (LDA), where it is assumed that the
measurements are normally distributed. Unlike LDA however, in QDA
there is no assumption that the covariance of each of the classes is
identical. To estimate the parameters required in quadratic discrimination
more computation and data is required than in the case of linear
discrimination. If there is not a great difference in the group covariance
matrices, then the latter will perform as well as quadratic discrimination.
Quadratic Discrimination is the general form of Bayesian discrimination.

Discriminant analysis is used to determine which variables discriminate
between two or more naturally occurring groups. For example, an
educational researcher may want to investigate which variables
discriminate between high school graduates who decide (1) to go to
college, (2) NOT to go to college. For that purpose the researcher could
collect data on numerous variables prior to students' graduation. After
graduation, most students will naturally fall into one of the two categories.
Discriminant Analysis could then be used to determine which variable(s)
are the best predictors of students' subsequent educational choice.
Computationally, discriminant function analysis is very similar to analysis
of variance (ANOVA). For example, suppose the same student graduation
scenario. We could have measured students' stated intention to continue on
to college one year prior to graduation. If the means for the two groups
(those who actually went to college and those who did not) are different,
then we can say that the intention to attend college as stated one year prior
to graduation allows us to discriminate between those who are and are not
college bound (and this information may be used by career counselors to
provide the appropriate guidance to the respective students). The basic
idea underlying discriminant analysis is to determine whether groups
differ with regard to the mean of a variable, and then to use that variable to
predict group membership (e.g. of new cases).

99

Discriminant Analysis may be used for two objectives: either we want to
assess the adequacy of classification, given the group memberships of the
objects under study; or we wish to assign objects to one of a number of
(known) groups of objects. Discriminant Analysis may thus have a
descriptive or a predictive objective. In both cases, some group
assignments must be known before carrying out the Discriminant
Analysis. Such group assignments, or labeling, may be arrived at in any
way. Hence Discriminant Analysis can be employed as a useful
complement to Cluster Analysis (in order to judge the results of the latter)
or Principal Components Analysis.

7.3.4 Logistic Regression:
Another approach to linear classification is the logistic regression model,
which, despite its name, is a classification rather than a regression method.

Logistic regression models the probabilities of an observation belonging to
each of the K classes via linear functions, ensuring these probabilities sum
up to one and stay in the (0, 1) range. The model is specified in terms
of K-1 log-odds ratios, with an arbitrary class chosen as reference class (in
this example it is the last class, K). Consequently, the difference between
log-probabilities of belonging to a given class and to the reference class is
modeled linearly as

where G stands for the true, observed class. From here, the probabilities of
an observation belonging to each of the classes can be calculated as

which clearly shows that all class probabilities sum up to one.

100

Logistic regression models are typically estimated by maximum
likelihood. Just like linear models for regression can be regularized to
improve accuracy, so can logistic regression.

7.4 KERNEL FUNCTIONS IN NON-LINEAR
CLASSIFICATION

Figure 20: Kernal Function

Once the data points are non-linear separable in their original feature
space, the linear classifier may fail to determine where the decision
boundary is. However, mapping the original feature space (x ∈ ℝᵈ) into
the higher dimensional feature space (ϕ(x) ∈ ℝᵉ , e>d) can help to
resurrect the linear classifier to do the job correctly.

Figure 21: Mapping data points with 2-D feature vectors into 3-D
feature vectors

Figure illustrates the concepts of classifying data points through feature
mapping. Originally, the data points with the feature vectors x = [x₁, x₂] in
the 2-D space have the concentrically circular distribution. It is impossible
to use a linear classifier to distinguish the decision boundary.

Nonetheless, by incorporating a certain mapping function ϕ(x), the feature
vectors can be transformed into 3-D feature space. The new data points

101

with 3-D feature vectors ϕ(x) = [x₁, x₂,(x₁²+x₂²)] can now be using the
linear classifier to determine the decision boundary hyperplane. This is the
power of feature mapping that can allow us to deal with the more complex
data distribution pattern with more expressive ability. However, the
drawbacks of using ϕ(x) directly are that It is sometimes hard to explicitly
construct a ϕ(x) directly. Increase computational power quickly with the
increased feature dimensions. But the kernel functions can provide an
efficient way to solve this.

7.4.1 Kernel Functions:
The idea of kernel functions is to take the inner products between two
feature vectors, and evaluate inner products is not computationally costly.
We can then exploit only the result of the inner products in our algorithms.
For example, if we want to have the ϕ(x) as follows,

The kernel function is take the inner products between two feature vectors
as follows,

As a result, the form of the kernel functions will be easier for us to
construct than directly using the mapping functions in the higher feature
dimensions.

7.4.2 Kernel Composition Rules:
There are several kernel compositions rules that can be used to construct
more complex kernel functions.

102

7.4.3 Radial Basis Kernel:
The kernel functions can even empower the feature vectors to be infinite
dimensional. One of the common kernel functions is the radial basis
kernel. The definition is as follows.

Because the exponential can be expanded to the infinite power series, the
radial basis kernel gives much more expressiveness to the feature
mapping. The following is the proof of the radial basis kernel that is a
kernel function.

Kernel Perceptron Algorithm:
Recalling the perceptron algorithm here, the perceptron algorithm
updates θ = θ + y⁽ ʲ ⁾ x⁽ ʲ ⁾ once a data point is misclassified. In the other
word, the θ can be expressed alternatively as follows.

where α is the number of mistakes the perceptron made on the j-th data
point. If it is in the mapping feature space, the θ can be expressed as
follows.

103

SUMMARY

We have two choices, we can either use the sci-kit learn library to import
the SVM model and use it directly or we can write our model from
scratch. Instead, using a library from sklearn.SVM module which
includes Support Vector Machine algorithms will be much easier in
implementation as well as to tune the parameters. You can try for hand-on
with the SVM algorithms including classification and regression problems.
SVM Use Cases

Some use-cases of SVM are as below.

 Face Detection

 Bioinformatics

 Classification of Images

 Remote Homology Detection

 Handwriting Detection

 Generalized Predictive Control

 Text and Hypertext Categorization

UNIT END QUESTION

 Support vector Machine
1. Explain support vector machines with example.

2. What are the types of Support vector machines?

3. What are Hyperplane and Support vectors in the SVM algorithms?

4. Explain the working of SVM.

5. Why SVM is an example of a large margin classifier?
6. What is a kernel in SVM? Why do we use kernels in SVM?

7. Explain the key terminologies of Support Vector Machine.

8. Define support vector machine (SVM) and further explain the
maximum margin linear separators concept.

 Soft Margin SVM
1. What is soft margin SVM?

2. Explain the working of Soft margin SVM.

3. Explain the formulation of soft margin SVM?

 Obtaining probabilities from linear classifiers:
1. How to obtain probabilities from linear classifiers using logistic

regression?

 Kernal methods for non-linearity
1. Explain Kernel methods for non-linearity

104

2. What are the limitations of the kernel method?

3. Explain optimization problem for SVM with non-linear kernal

REFERENCE

 "A First Course in Machine Learning by Simon Rogers and Mark
Girolami

 Machine Learning Algorithms: A reference guide to popular
algorithms for data science and machine learning July 2017 Author:
Giuseppe Bonaccorso Publisher: Packt Publishing ISBN:978-1-
78588-962-2.

 Deep Learning Ian Goodfellow, Yoshua Bengio, and Aaron Courville

 Hands-On Machine Learning with Scikit-Learn and TensorFlow

 Concepts, Tools, and Techniques to Build Intelligent Systems (2nd
edition)

105

UNIT IV

8

DISTANCE BASED MODELS

Unit Structure
8.0 Objectives

8.1 Introduction to Algebric Model

8.1.1 Distance based models
8.1.2 Distance Calculation Methods

8.2 Neighbours and Exemplars

8.3 Nearest Neighbours Classification

8.3.1 What is Nearest Neighbour?

8.3.2 Working of K-NN Algorithm

8.3.3 Examples of K-NN Algorithm

8.4 K-Means Algorithm

8.4.1 K-Means algorithm working

8.4.2 Examples of K-Means algorithm

8.5 Hierarchical Clustering

8.5.1 Agglomerative Clustering

8.5.2 Examples of Hierarchical Clustering

Summary

Unit End Exercises

List of References

8.0 OBJECTIVES

This chapter would make you understand the following concepts:

 Meaning of distance based model

 Distance Computation methods

 Concepts of different clustering algorithms

 Application of clustering algorithms to solve problems

8.1 INTRODUCTION TO ALGEBRIC MODEL

In this section, we consider models that define similarity by considering
the geometry of the instance space. In Algebric models, features could be
described as points in two dimensions (x- and y-axis) or a three-
dimensional space (x, y, and z). Even when features are not intrinsically
geometric, they could be modelled in a geometric manner (for example,

106

temperature as a function of time can be modelled in two axes). In
algebraic models, there are two ways we could impose similarity.

 We could use geometric concepts like lines or planes to segment
(classify) the instance space. These are called Linear models.

 Alternatively, we can use the geometric notion of distance to represent
similarity. In this case, if two points are close together, they have
similar values for features and thus can be classed as similar. We call
such models as Distance-based models.

8.1.1 Distance based models:

In the first section we have seen the concept of Algebric models. Second
class or type of the algebric models is known as the Distance-based
models. Geometry of data is used to design the Distance-based models.
Working of the distance-based models is based on the concept of
distance. With respect to machine learning, the concept of distance is not
based on just the physical distance between two points. Instead, we could
think of the distance between two points considering the mode of
transport between two points. For example if we are travelling by plane
from one city to other then the plane will cover less distance physically as
compared to travelling by train. The reason for this is the unrestricted
route for a plane. In the same manner for chess, the concept of distance
depends on the piece used. For example, a Bishop can move diagonally.

Thus, depending on the entity and the mode of travel, the concept of
distance can be experienced differently.

8.1.2 Distance Calculation Methods:

The following distance metrics are commonly used to calculate the
distance.

1. Euclidean distance:
For geometrical problems Euclidean distance is used as the standard
metric. It is simply the ordinary distance between two points. Euclidean
distance is mainly extensively used in clustering problems. In K-means
algorithms by default Euclidean distance is used as distance measure. The
Euclidean distance is calculated by taking the root of square differences
between the coordinates of a pair of objects(x1,y1) and (x2,y2) as shown in
equation given below

Distance = (−) + (−) .

2. Manhattan distance:
Manhattan distance is a distance metric that calculates the absolute
differences between coordinates of pair of data objects as shown in
equation given below:

Distance = |(−)| + |(−)|

107

8.2 NEIGHBOURS AND EXEMPLARS

In the Distance based models distance is applied through the concept
of neighbours and exemplars. Neighbours are points in proximity with
respect to the distance measure expressed through exemplars. Exemplars
are either centroids that find a centre of mass according to a chosen
distance metric or medoids that find the most centrally located data point.
The most commonly used centroid is the arithmetic mean, which
minimises squared Euclidean distance to all other points.

 The centroid represents the geometric centre of a plane figure, i.e., the
arithmetic mean position of all the points in the figure from the
centroid point. This definition extends to any object in n-dimensional
space: its centroid is the mean position of all the points.

 Medoids are similar in concept to means or centroids. Medoids are
most commonly used on data when a mean or centroid cannot be
defined. They are used in contexts where the centroid is not
representative of the dataset, such as in image data.

8.3 NEAREST NEIGHBOURS CLASSIFICATION

Examples of distance-based models include the nearest-neighbour models,
which use the training data as exemplars – for example, in classification.

8.3.1 What is Nearest Neighbour?:
Nearest neighbouris a method in machine learning method that aims at
labelling previously unseen query objects while distinguishing two or
more destination classes. As any classifier, in general, it requires some
training data with given labels and, thus, is an instance of supervised
learning.

K-nearest neighbors (KNN) algorithm is a type of supervised ML
algorithm which can be used for both classification as well as regression
predictive problems. However, it is mainly used for classification
predictive problems in industry. The following two properties would
define KNN well −

 Lazy learning algorithm: KNN is a lazy learning algorithm because it
does not have a specialized training phase and uses all the data for
training while classification.

 Non-parametric learning algorithm: KNN is also a non-parametric
learning algorithm because it doesn’t assume anything about the
underlying data.

8.3.2 Working of KNN Algorithm:
K-nearest neighbors (KNN) algorithm uses ‘feature similarity’ to predict
the values of new datapoints which further means that the new data point
will be assigned a value based on how closely it matches the points in the

108

training set. We can understand its working with the help of following
steps

Step 1 For implementing any algorithm, we need dataset. So during the
first step of KNN, we must load the training as well as test data.

Step 2 Next, we need to choose the value of K i.e. the nearest data
points. K can be any integer.

Step 3 For each point in the test data do the following –

 3.1 − Calculate the distance between test data and each row of
training data with the help of any of the method namely: Euclidean
or Manhattan distance. The most commonly used method to
calculate distance is Euclidean.

 3.2 − Now, based on the distance value, sort them in ascending
order.

 3.3 − Next, it will choose the top K rows from the sorted array.

 3.4 − Now, it will assign a class to the test point based on most
frequent class of these rows.

Step 4 – End:

Start

Initialize the value of K

Calculate Distance between input sample and training
sample

Sort the distance

Take K nearest neighbours

Apply simple majority

End

109

8.3.3 Examples of K-NN Algorithm:

Example 1:
The following is an example to understand the concept of K and working
of KNN algorithm

Suppose we have a dataset which can be plotted as follows:

Now, we need to classify new data point (60,60) into blue or red class. We
are assuming K = 3 i.e. it would find three nearest data points. It is shown
in the next figure

We can see in the above figure the three nearest neighbours of the data
point with black dot. Among those three, two of them lie in Red class
hence the black dot will also be assigned in red class.

Example 2:
We have collected data from the sample survey. This data represents the
two attributes as rating of acting of actors in that movie and other is rating

110

of story line of that movie. The rating scale is used from 1(excellent) to 7
(poor). Now we need to classify whether a given movie is goodor not.
Now we want to check whether new movie with rating as X1 = 3 and X2
= 7 is good or not. Here are four training samples:

X1 = Rating of
Acting skills of
movie actors

X2 = Rating of story
line of movie

Y = Classification

7 7 Bad
7 4 Bad
3 4 Good
1 4 Good

Step 1 :Initialize and Define k.

Lets say, k = 3

NOTE : Always choose k as an odd number if the number of attributes is
evento avoid a tie in the class prediction

Step2 : Compute the distance between input sample and training sample

- Co-ordinate of the input sample is (3,7).

- Instead of calculating the Euclidean distance, we calculate the Squared
Euclidean distance.

X1 = Rating of Acting
skills of movie actors

X2 = Rating of story
line of movie

Squared Euclidean
distance

7 7 (7-3)2 + (7-7)2 = 16
7 4 (7-3)2 + (4-7)2 = 25
3 4 (3-3)2 + (4-7)2 = 09

Step 3: Sort the distance and determine the nearest neighbours based of
the Kth minimum distance :

X1 =
Rating of
Acting
skills of
movie
actors

X2 = Rating
of story line
of movie

Squared
Euclidean
distance

Rank
minimum
distance

Is it
included in
3-Nearest
Neighbour?

7 7 16 3 Yes
7 4 25 4 No
3 4 09 1 Yes
1 4 13 2 Yes

Step 4 : Take 3-Nearest Neighbours:
Gather the category Y of the nearest neighbours.

111

X1 =
Rating
of
Acting
skills of
movie
actors

X2 =
Rating
of story
line of
movie

Squared
Euclidean
distance

Rank
minimum
distance

Is it
included in
3-Nearest
Neighbour?

Y =
Category
of the
nearest
neighbour

7 7 16 3 Yes Bad
7 4 25 4 No -
3 4 09 1 Yes Good
1 4 13 2 Yes Good

Step 5: Apply simple majority

 Use simple majority of the category of the nearest neighbours as the
prediction value of the query instance.

 We have 2 “good” and 1 “bad”. Thus we conclude that the new
moviewith X1 = 3 and X2 = 7 is included in the “good” category.

8.4 K- MEANS CLUSTERING

To solve the wellknown clustering problem K-means is used, which is one
of the simplest unsupervised learning algorithms. Given data set is
classified assuming some prior number of clusters through a simple and
easy procedure. In k- means clustering for each cluster one centroid is
defined. Total there are k centroids. The centroids should be defined in a
tricky way because result differs based on the location of centroids. To get
the better results we need to place the centroids far away from each other
as much as possible. Next, each point from the given data set is stored in a
group with closest centroid. This process is repeated for all the points. The
first step is finished when all points are grouped. In the next step new k
centroids are calculated again from the result of the earlier step. After
finding these new k centroids, a new grouping is done for the data points
and closest new centroids. This process is done iteratively. The process is
repeated unless and until no data point moves from one group to another.
The aim of this algorithm is to minimize an objective function such as sum
of a squared error function. The objective function is defined as follows:

J =
k


j = 1

x


i = 1
|| x

j
i – Cj ||2

Here || x
j
i – Cj ||2shows the selected distance measure between a data point

x
j
iand the cluster centre Cj. It is a representation of the distance of the n

data points from their respective cluster centers.

112

8.4.1 Working of K-means Algorithm:
The algorithm is comprises of the following steps:

1. Identify the K centroids for the given data points that we want to
cluster.

2. Store each data point in the group that has the nearest centroid.

3. When all data points have been stored, redefine the K centroids.

4. Repeat Steps 2 and 3 until the no data points move from one group to
another. The result of this process is the clusters from which the metric
to be minimized can be calculated.

8.4.3 Examples ofK-means Algorithm:

Example 1:
Given {2, 4, 10, 12, 3, 20, 30, 11, 25}. Assume number of clusters i.e. K =
2

Solution:
Randomly assign means: m1 = 3, m2 = 4

The numbers which are close to mean m1 = 3 are grouped into cluster k1

and others in k2.

Again calculate new mean for new cluster group.

Start

Initialise number of clusterK

Calculate/Initialise
Centroid

Distance objects to
centroids

Grouping based on
minimum distance

No
object
move

group?

End

Yes

No

113

K1 = (2, 3}, k2 = {4, 10, 12, 20, 30, 11, 25} m1 = 2.5, m2 = 16

K1 = (2, 3, 4}, k2 = {10, 12, 20, 30, 11, 25} m1 = 3, m2 = 18

K1 = (2, 3, 4, 10}, k2 = {12, 20, 30, 11, 25} m1 = 4.75, m2 = 19.6

K1 = (2, 3, 4, 10, 11, 12}, k2 = {20, 30, 25} m1 = 7, m2 = 25

Final clusters

K1 = (2, 3, 4, 10, 11, 12}, k2 = {20, 30, 25}

Example 2:
Given {10, 4, 2, 12, 3, 20, 30, 11, 25, 31} Assume number of clusters i.e.
K = 2

Solution:
Randomly assign alternative values to each cluster
K1 = (10, 2, 3, 30, 25}, k2 = {4, 12, 20, 11, 31} m1 = 14, m2 = 15.6

Re assign
K1 = (2, 3, 4, 10, 11, 12}, k2 = {20, 25, 30, 31} m1 = 7, m2 = 26.5

Re assign
K1 = (2, 3, 4, 10, 11, 12}, k2 = {20, 25, 30, 31} m1 = 7, m2 = 26.5

Final clusters
K1 = (2, 3, 4, 10, 11, 12}, k2 = {20, 25, 30, 31}

Example 3:
Let’s assume that we have 4 types of items and each item has 2 attributes
or features. We need to group these items in to k = 2 groups of items based
on the two features.

Object Attribute 1(x)
Number of parts

Attribute 2(y)
Colour code

Item 1 1 1
Item 2 2 1
Item 3 4 3
Item 4 5 4

Solution :

Initial value of centroid:
Suppose we use item 1 and 2 as the first centroids, c1 = (1, 1) and c2 = (2,
1) The distance of item 1 = (1, 1) to c1 = (1, 1) and with c2 = (2, 1) is
calculated as,

D = (1 – 1)2 + (1 – 1)2 = 0

D = (1 – 2)2 + (1 – 1)2 = 1

114

The distance of item 2 = (2, 1) to c1 = (1, 1) and with c2 = (2, 1) is
calculated as,

D = (2 – 1)2 + (1 – 1)2 = 1

D = (2 – 2)2 + (1 – 1)2 = 0

The distance of item 3 = (4, 3) to c1 = (1, 1) and with c2 = (2, 1) is
calculated as,

D = (4 – 1)2 + (3 – 1)2 = 3.61

D = (4 – 2)2 + (3 – 1)2 = 2.83

The distance of item 4 = (5, 4) to c1 = (1, 1) and with c2 = (2, 1) is
calculated as,

D = (5 – 1)2 + (4 – 1)2 = 5

D = (5 – 2)2 + (4 – 1)2 = 4.24

Objects-centroids distance:

D0 =






0 1 3.61 5

1 0 2.83 4.24

c1 = (1, 1) group 1

c2 = (2, 1) group 2

To find the cluster of each item we consider the minimum Euclidian
distance between group1 and group 2.

From the above object centroid distance matrix we can see,

 Item 1 has minimum distance for group1, so we cluster item 1 in group
1.

 Item 2 has minimum distance for group 2, so we cluster item 2 in
group 2.

 Item 3 has minimum distance for group 2, so we cluster item 3 in
group 2.

 Item 4 has minimum distance for group 2, so we cluster item 4 in
group 2.

Object Clustering:

G0 =






1 0 0 0

0 1 1 1

Iteration 1 : Determine centroids:
C1 has only one member thus c1 = (1, 1) remains same.

C2 = (2 + 4 + 5/3, 1 + 3 + 4/3) = (11/3, 8/3)

The distance of item 1 = (1, 1) to c1 = (1, 1) and with c2 = (11/3, 8/3) is
calculated as,

115

D = (1 – 1)2 + (1 – 1)2 = 0

D = (1 – 11/3)2 + (1 – 8/3)2 = 3.41

The distance of item 2 = (2, 1) to c1 = (1, 1) and with c2 = (11/3, 8/3) is
calculated as,

D = (2 – 1)2 + (1 – 1)2 = 1

D = (2 – 11/3)2 + (1 – 8/3)2 = 2.36

The distance of item 3 = (4, 3) to c1 = (1, 1) and with c2 = (2, 1) is
calculated as,

D = (4 – 1)2 + (3 – 1)2 = 3.61

D = (4 – 11/3)2 + (3 – 8/3)2 = 0.47

The distance of item 4 = (5, 4) to c1 = (1, 1) and with c2 = (2, 1) is
calculated as,

D = (5 – 1)2 + (4 – 1)2 = 5

D = (5 – 11/3)2 + (4 – 8/3)2 = 1.89

Objects-centroids distance

D2 =






0 1 3.61 5

3.41 2.36 0.47 1.89

c1 = (1, 1) group 1

c2 = 



11

3 ,
8
3 group 2

From the above object centroid distance matrix we can see,

 Item 1 has minimum distance for group1, so we cluster item 1 in group
1.

 Item 2 has minimum distance for group 1, so we cluster item 2 in
group 1.

 Item 3 has minimum distance for group 2, so we cluster item 3 in
group 2.

 Item 4 has minimum distance for group 2, so we cluster item 4 in
group 2.

Object Clustering:

G1 =






1 1 0 0

0 0 1 1

Iteration 2 : Determine centroids:

C1 = (1 + 2/2, 1 + 1/2) = (3/2, 1)

116

C2 = (4 + 5/2, 3 + 4/2) = (9/2, 7/2)

The distance of item 1 = (1, 1) to c1 = (3/2, 1) and with c2 = (9/2, 7/2) is
calculated as,

D = (1 – 3/2)2 + (1 – 1)2 = 0.5

D = (1 – 9/2)2 + (1 – 7/2)2 = 4.3

The distance of item 2 = (2, 1) to c1 = (3/2, 1) and with c2 = (9/2, 7/2) is
calculated as,

D = (2 – 3/2)2 + (1 – 1)2 = 0.5

D = (2 – 9/2)2 + (1 – 7/2)2 = 3.54

The distance of item 3 = (4, 3) to c1 = (3/2, 1) and with c2 = (9/2, 7/2) is
calculated as,

D = (4 – 3/2)2 + (3 – 1)2 = 3.20

D = (4 – 9/2)2 + (3 – 7/2)2 = 0.71

The distance of item 4 = (5, 4) to c1 = (3/2, 1) and with c2 = (9/2, 7/2) is
calculated as,

D = (5 – 3/2)2 + (4 – 1)2 = 4.61

D = (5 – 9/2)2 + (4 – 7/2)2 = 0.71

Objects-centroids distance:

D2 =






0.5 0.5 3.20 4.61

4.3 3.54 0.71 0.71

c1 = 



3

2 , 1 group 1

c2 = 



9

2 ,
7
2 group 2

From the above object centroid distance matrix we can see,

 Item 1 has minimum distance for group1, so we cluster item 1 in group
1.

 Item 2 has minimum distance for group 1, so we cluster item 2 in
group 1.

 Item 3 has minimum distance for group 2, so we cluster item 3 in
group 2.

 Item 4 has minimum distance for group 2, so we cluster item 4 in
group 2.

Object Clustering:

G2 =






1 1 0 0

0 0 1 1

117

G2 = G1, Objects does not move from group any more. So, the final
clusters are as follows:

 Item 1 and 2 are clustered in group 1

 Item 3 and 4 are clustered in group 2

Example 4 :
Suppose we have eight data points and each data point has 2 features.
Cluster the data points into 3 clusters using k-means algorithm.

Data points Attribute 1(x) Attribute 2(y)

1 2 10
2 2 5
3 8 4
4 5 8
5 7 5
6 6 4
7 1 2
8 4 9

Solution:

Initial value of centroid:
Suppose we use data points 1, 4 and 7 as the first centroids, c1 = (2, 10), c2

= (5, 8) and c3 = (1, 2)

The distance of data point 1 = (2, 10) to c1 = (2, 10), c2 = (5, 8) and with c3

= (1, 2) is,

D = (2 – 2)2 + (10 – 10)2 = 0

D = (2 – 5)2 + (10 – 8)2 = 3.61

D = (2 – 1)2 + (10 – 2)2 = 8.06

The distance of data point 1 = (2, 5) to c1 = (2, 10), c2 = (5, 8) and with c3

= (1, 2) is,

D = (2 – 2)2 + (5 – 10)2 = 5

D = (2 – 5)2 + (5 – 8)2 = 4.24

D = (2 – 1)2 + (5 – 2)2 = 3.16

The distance of data point 1 = (8, 4) to c1 = (2, 10), c2 = (5, 8) and with c3

= (1, 2) is,

D = (8 – 2)2 + (4 – 10)2 = 8.48

D = (8 – 5)2 + (4 – 8)2 = 5

118

D = (8 – 1)2 + (4 – 2)2 = 7.28

The distance of data point 1 = (5, 8) to c1 = (2, 10), c2 = (5, 8) and with c3

= (1, 2) is,

D = (5 – 2)2 + (8 – 10)2 = 3.61

D = (5 – 5)2 + (8 – 8)2 = 0

D = (5 – 1)2 + (8 – 2)2 = 7.21

The distance of data point 1 = (7, 5) to c1 = (2, 10), c2 = (5, 8) and with c3

= (1, 2) is,

D = (7 – 2)2 + (5 – 10)2 = 7.07

D = (7 – 5)2 + (5 – 8)2 = 3.61

D = (7 – 1)2 + (5 – 2)2 = 6.71

The distance of data point 1 = (6, 4) to c1 = (2, 10), c2 = (5, 8) and with c3

= (1, 2) is,

D = (6 – 2)2 + (4 – 10)2 = 7.21

D = (6 – 5)2 + (4 – 8)2 = 4.12

D = (6 – 1)2 + (4 – 2)2 = 5.39

The distance of data point 1 = (1, 2) to c1 = (2, 10), c2 = (5, 8) and with c3

= (1, 2) is,

D = (1 – 2)2 + (2 – 10)2 = 8.06

D = (1 – 5)2 + (2 – 8)2 = 7.21

D = (1 – 1)2 + (2 – 2)2 = 0

The distance of data point 1 = (4, 9) to c1 = (2, 10), c2 = (5, 8) and with c3

= (1, 2) is,

D = (4 – 2)2 + (9 – 10)2 = 2.24

D = (4 – 5)2 + (9 – 8)2 = 1.4

D = (4 – 1)2 + (9 – 2)2 = 7.62

Objects-centroids distance:

D0 =






0 5 8.48 3.61 7.07 7.21 8.06 2.24

3.61 4.24 5 0 3.61 4.12 7.21 1.4

8.06 3.16 7.28 7.21 6.71 5.39 0 7.62
c1 = (2, 10) group 1

c2 = (5, 8) group 2

c3 = (1, 2) group 3

119

From the above object centroid distance matrix we can see,

 Data point 1 has minimum distance for group1, so we cluster data
point 1in group 1.

 Data point 2 has minimum distance for group3, so we cluster data
point 2in group 3.

 Data point 3 has minimum distance for group 2, so we cluster data
point 3 in group 2.

 Data point 4 has minimum distance for group 2, so we cluster data
point 4 in group 2.

 Data point 5 has minimum distance for group 2, so we cluster data
point 5 in group 2.

 Data point 6 has minimum distance for group 2, so we cluster data
point 6 in group 2.

 Data point 7 has minimum distance for group 3, so we cluster data
point 7 in group 3.

 Data point 8 has minimum distance for group 2, so we cluster data
point 8 in group 2.

Object Clustering:

G0 =






1 0 0 0 0 0 0 0

0 0 1 1 1 1 0 1

0 1 0 0 0 0 1 0

Iteration 1: Determine centroids

C1has only one member thus c1 = (2, 10) remains same.

C2 = (8 + 5 + 7 + 6 + 4/5, 4 + 8 + 5 + 4 + 9/5) = (6, 6)

C3 = (2 + 1/2, 5 + 2/2) = (1.5, 3.5)

Objects-centroids distance:

D1 =






0 5 8.48 3.61 7.07 7.21 8.06 2.24

5.66 4.12 2.83 2.24 1.41 2 6.40 3.16

6.52 1.58 6.25 5.7 5.7 4.52 1.58 6.04
c1 = (2, 10) group 1

c2 = (6, 6) group 2

c3 = (1.5, 3.5) group 3

Object Clustering:

G1 =






1 0 0 0 0 0 0 1

0 0 1 1 1 1 0 0

0 1 0 0 0 0 1 0

120

Iteration 2 : Determine centroids:

C1 = (2 + 4/2, 10 + 9/2) = (3, 9.5)

C2 = (8 + 5 + 7 + 6/4, 4 + 8 + 5 + 4/4) = (6.5, 5.25)

C3 = (2 + 1/2, 5 + 2/2) = (1.5, 3.5)

D2 =






1.12 2.35 7.43 2.5 6.02 6.26 7.76 1.12

6.54 4.51 1.95 3.13 0.56 1.35 6.38 7.68

6.52 1.58 6.52 5.7 5.7 4.52 1.58 6.04
c1 = (3, 9.5) group 1

c2 = (6.5, 5.25) group 2

c3 = (1.5, 3.5) group 3

Object Clustering:

G2 =






1 0 0 1 0 0 0 1

0 0 1 0 1 1 0 0

0 1 0 0 0 0 1 0

Iteration 3 : Determine centroids:

C1 = (2 + 5 + 4/3, 10 + 9 + 8/3) = (3.67, 9)

C2 = (8 + 7 + 6/3, 4 + 5 + 4/3) = (7, 4.33)

C3 = (2 + 1/2, 5 + 2/2) = (1.5, 3.5)

D2 =






1.95 4.33 6.61 1.66 5.2 5.52 7.49 0.33

6.01 5.04 1.05 4.17 0.67 1.05 6.44 5.55

6.52 1.58 6.52 5.7 5.7 4.52 1.58 6.04
c1 = (3.67, 9) group 1

c2 = (7, 4.33) group 2

c3 = (1.5, 3.5) group 3

Object Clustering:

G3 =






1 0 0 1 0 0 0 1

0 0 1 0 1 1 0 0

0 1 0 0 0 0 1 0

G3 = G2, Objects does not move from group any more. So, the final
clusters are as follows:

 Data points 1, 4 and 8 are clustered in group 1

 Data points 3, 5 and 6 are clustered in group 2

 Data points 2 and 7 are clustered in group 3

121

8.5 HIERARCHICAL CLUSTERING

Hierarchical clustering algorithms works in top down manner or bottom
up manner. Hierarchical clustering is known as Hierarchical
agglomerative clustering.

8.5.1 Agglomerative Hierarchical Clustering:
In agglomerative clustering initially each data point is considered as a
single cluster. In the next step, pairs of clusters are merged or
agglomerated. This step is repeated until all clusters have been merged in
to a single cluster. At the end a single cluster remains that contains all the
data points. Hierarchical clustering algorithms works in top-down manner
or bottom-up manner. Hierarchical clustering is known as Hierarchical
agglomerative clustering.

In agglomerative, clustering is represented as a dendogram as shown
below where each merge is represented by a horizontal line

A clustering of the data objects is obtained by cutting the dendogram at
the desired level,then each connected forms a cluster.

The basic steps of Agglomerative hierarchical clustering are as follows:

1. Compute the proximity matrix(distance matrix)

2. Assume each data point as a cluster.

3. Repeat

4. Merge the two nearest clusters.

5. Update the proximity matrix

6. Until only a single cluster remains

In Agglomerative hierarchical clustering proximity matrix is symmetric
ie., the number on lower half will be same as the numbers on top half.

Different approaches to defining the distance between clusters distinguish
the different algorithm’s ie., Single linkage,Complete linkage and Average
linkage clusters.

In single linkage, the distance between two clusters is considered to be

Root: One node

Leaf: Individual clustersA B C D E F

122

equal to shortest distance from any member of one cluster to any member
of other cluster.

D(r,s) =Min { d(i,j), object i-> cluster r and object j-> cluster s

In complete linkage, the distance between two clusters is considered to be
equal to greatest distance from any member of one cluster to any member
of other cluster.

D(r,s) =Max { d(i,j), object i-> cluster r and object j-> cluster s

In average linkage, we consider the distance between any two clusters A
and B is taken to be equal to average of all distances between pairs of
object I in A and j in B.ie., mean distance between elements of each other.

D(r,s) =Mean { d(i,j), object i-> cluster r and object j-> cluster s

Start

Object and their measured features

Compute distance matrix

Set object as cluster

No. of
cluster =1

Merge 2 closest clusters

Update distance matrix

End

Yes

No

123

8.5.2. Examples of Hierarchical Clustering:
Example 1:
The table below shows the six data points. Use all link methods to find
clusters. Use Euclidian distance measure.

X y
D1 0.4 0.53
D2 0.22 0.38
D3 0.35 0.32
D4 0.26 0.19
D5 0.08 0.41
D6 0.45 0.30

Solution:

First we will solve using single linkage:

The distance of data point D1 = (0.4, 0.53) to D2 = (0.22, 0.38) is,

D = (0.4 – 0.22)2 + (0.53 – 0.38)2 = 0.24

The distance of data point D1 = (0.4, 0.53) to D3 = (0.35, 0.32) is,

D = (0.4 – 0.35)2 + (0.53 – 0.32)2 = 0.22

The distance of data point D1 = (0.4, 0.53) to D4 = (0.26, 0.19) is,

D = (0.4 – 0.26)2 + (0.53 – 0.19)2 = 0.37

The distance of data point D1 = (0.4, 0.53) to D5 = (0.08, 0.41) is,

D = (0.4 – 0.08)2 + (0.53 – 0.41)2 = 0.34

The distance of data point D1 = (0.4, 0.53) to D6 = (0.45, 0.30) is,

D = (0.4 – 0.45)2 + (0.53 – 0.30)2 = 0.23

Similarly we will calculate all distances.

Distance matrix:

D1 0
D2 0.24 0
D3 0.22 0.15 0
D4 0.37 0.20 0.15 0
D5 0.34 0.14 0.28 0.29 0
D6 0.23 0.25 0.11 0.22 0.39 0

D1 D2 D3 D4 D5 D6

124

0.11 is smallest. D3 and D6 have smallest distance. So, we combine this
two in one cluster and recalculate distance matrix.

Distance ((D3, D6), D1) = min (distance (D3, D1), distance (D6, D1)) = min
(0.22, 0.23) = 0.22

Distance ((D3, D6), D2) = min (distance (D3, D2), distance (D6, D2)) = min
(0.15, 0.25) = 0.15

Distance ((D3, D6), D4) = min (distance (D3, D4), distance (D6, D4)) = min
(0.15, 0.22) = 0.15

Distance ((D3, D6), D5) = min (distance (D3, D5), distance (D6, D5)) = min
(0.28, 0.39) = 0.28

Similarly we will calculate all distances.

Distance matrix:

D1 0
D2 0.24 0
(D3, D6) 0.22 0.15 0
D4 0.37 0.20 0.15 0
D5 0.34 0.14 0.28 0.29 0

D1 D2 (D3, D6) D4 D5

0.14 is smallest. D2 and D5 have smallest distance. So, we combine this
two in one cluster and recalculate distance matrix.

Distance ((D3, D6), (D2, D5)) = min (distance (D3, D2), distance
(D6, D2), distance (D3, D5), distance (D6, D6))

= min (0.15, 0.25, 0.28, 0.29) = 0.15

Similarly, we will calculate all distances.

Distance matrix:

D1 0
(D2, D5) 0.24 0

(D3, D6) 0.22 0.15 0

D4 0.37 0.20 0.15 0
D1 (D2, D5) (D3, D6) D4

0.15 is smallest. (D2, D5) and (D3, D6) as well as D4 and (D3, D6) have
smallest distance. We can pick either one.

125

Distance matrix:

D1 0
(D2, D5, D3, D6) 0.22 0
D4 0.37 0.15 0

D1 (D2, D5, D3, D6) D4

0.15 is smallest. (D2, D5, D3, D6) and D4 have smallest distance. So, we
combine this two in one cluster and recalculate distance matrix.

Distance matrix:

D1 0
(D2, D5, D3, D6, D4) 0.22 0

D1 (D2, D5, D3, D6, D4)

Now a single cluster
remains (D2, D5, D3, D6,
D4, D1)

Next, we represent the
final dendogram for single
linkage as,

Now we will solve using complete linkage:

Distance matrix:

D1 0
D2 0.24 0
D3 0.22 0.15 0
D4 0.37 0.20 0.15 0
D5 0.34 0.14 0.28 0.29 0
D6 0.23 0.25 0.11 0.22 0.39 0

D1 D2 D3 D4 D5 D6

0.11 is smallest. D3 and D6 have smallest distance. So, we combine this
two in one cluster and recalculate distance matrix.

Distance ((D3, D6), D1) = max (distance (D3, D1), distance (D6, D1)) = max
(0.22, 0.23) = 0.23

Similarly, we will calculate all distances.

126

Distance matrix:

D1 0
D2 0.24 0
(D3, D6) 0.23 0.25 0
D4 0.37 0.20 0.22 0
D5 0.34 0.14 0.39 0.29 0

D1 D2 (D3, D6) D4 D5

0.14 is smallest. D2 and D5 have smallest distance. So, we combine this
two in one cluster and recalculate distance matrix.

Distance matrix:

D1 0
(D2, D5) 0.34 0
(D3, D6) 0.23 0.39 0
D4 0.37 0.29 0.22 0

D1 (D2, D5) (D3, D6) D4

 0.22 is smallest. Here (D3, D6) and D4 have smallest distance. So, we
combine these two in one cluster and recalculate distance matrix.

Distance matrix:

D1 0
(D2, D5) 0.34 0
(D3, D6, D4) 0.37 0.39 0

D1 (D3, D6, D4) (D3, D6, D4)

0.34 is smallest. (D2, D5) and D1 have smallest distance so, we combine
these two in one cluster and recalculate distance matrix.

Distance matrix:

(D2, D5, D1) 0 0
(D3, D6, D4) 0.39 0

(D2, D5, D1) (D3, D6, D4)

Now a single cluster
remains (D2, D5, D1,
D3, D6, D4)
Next, we represent the
final dendogram for
complete linkage as,

127

Now we will solve using average linkage

Distance matrix:

D1 0
D2 0.24 0
D3 0.22 0.15 0
D4 0.37 0.20 0.15 0
D5 0.34 0.14 0.28 0.29 0
D6 0.23 0.25 0.11 0.22 0.39 0

D1 D2 D3 D4 D5 D6

0.11 is smallest. D3 and D6 have smallest distance. So, we combine this
two in one cluster and recalculate distance matrix.

Distance ((D3, D6), D1) = 1/2 (distance (D3, D1) + distance (D6, D1)) = 1/2
(0.22 + 0.23) = 0.23

Similarly, we will calculate all distances.

Distance matrix:

D1 0
D2 0.24 0
(D3, D6) 0.23 0.2 0
D4 0.37 0.20 0.19 0
D5 0.34 0.14 0.34 0.29 0

D1 D2 (D3, D6) D4 D5

0.14 is smallest. D2 and D5 have smallest distance. So, we combine this
two in one cluster and recalculate distance matrix.

Distance matrix:

D1 0
(D2, D5) 0.29 0
(D3, D6) 0.22 0.27 0
D4 0.37 0.22 0.15 0

D1 (D2, D5) (D3, D6) D4

(D3, D6) and D4 have smallest distance. So, we combine this two in one
cluster and recalculate distance matrix.

Distance matrix:

D1 0
(D2, D5) 0.24 0
(D3, D6, D4) 0.27 0.26 0

D1 (D2, D5) (D3, D6, D4)

128

0.24 is smallest. (D2, D5) and D1 have smallest distance. So, we combine
this two in one cluster and recalculate distance matrix.

Distance matrix:

(D2, D5, D1) 0 0
(D3, D6, D4) 0.26 0

(D2, D5, D1) (D3, D6, D4)

Now a single cluster remains (D2, D5, D1, D3, D6, D4)
Next, we represent the final dendogram for average linkage as,

Example 2:
Apply single linkage, complete linkage and average linkage on the
following distance matrix and draw dendogram.

Solution :
First we will solve using single linkage

Distance matrix:
P1 0
P2 2 0
P3 6 3 0
P4 10 9 7 0
P5 9 8 5 4 0

P1 P1 P3 P4 P5

2 is smallest. P1 and P2 have smallest distance. So, we combine this two in
one cluster and recalculate distance matrix.

Distance ((P1, P2), P3) = min (distance (P, P3), distance (P2, P3)) = min (6,
3) = 3

Similarly, we will calculate all distances.

Distance matrix:

(P1, P2) 0
P3 3 0
P4 9 7 0
P5 8 5 4 0

(P1, P2) P3 P4 P5

3 is smallest. (P1, P2) and P3 have smallest distance. So, we combine this
two in one cluster and recalculate distance matrix.

Distance ((P1, P2, P3), P4)) = min (distance (P1, P4), distance (P2, P4),
distance (P3, P4)) = min (9, 7) = 7

129

Similarly, we will calculate all distances.

Distance matrix:

(P1, P2, P3) 0
P4 7 0

P5 5 4 0
(P1, P2, P3) P4 P5

4 is smallest. P4 and P5 have smallest distance.

Distance matrix:

(P1, P2, P3) 0

(P4, P5) 5 0
(P1, P2, P3) (P4, P5)

Now a single cluster remains (P1, P2, P3, P4, P5)

Next, we represent the final dendogram for
single linkage as,

Now we will solve using complete linkage
Distance matrix

P1 0
P2 2 0
P3 6 3 0
P4 10 9 7 0
P5 9 8 5 4 0

P1 P2 P3 P4 P5

2 is smallest. P1 and P2 have smallest distance. So, we combine this two in
one cluster and recalculate distance matrix.

Distance ((P1, P2), P3) = max (distance (P1, P3), distance (P2, P3)) = max
(6, 3) = 6

Similarly, we will calculate all distances.

Distance matrix

(P1, P2) 0
P3 6 0
P4 10 7 0
P5 9 5 4 0

(P1, P2) P3 P4 P5

130

4 is smallest. P4 and P5 have smallest distance. So, we combine this two in
one cluster and recalculate distance matrix.

Distance matrix:

(P1, P2) 0
P3 6 0
(P4, P5) 10 7 0

(P1, P2) P3 (P4, P5)

6 is smallest. (P1, P2) and P3 have smallest distance. So, we combine this
two in one cluster and recalculate distance matrix.

Distance matrix:

(P1, P2, P3) 0
(P4, P5) 10 0

(P1, P2, P3) (P4, P5)

Now a single cluster remains (P1, P2, P3, P4, P5)

Next, we represent the final dendogram for
complete linkage as,

Now we will solve using average linkage

Distance matrix:

P1 0
P2 2 0
P3 6 3 0
P4 10 9 7 0
P5 9 8 5 4 0

P1 P2 P3 P4 P5

2 is smallest. P1 and P2 have smallest distance. So, we combine this two in
one cluster and recalculate distance matrix.

Distance ((P1, P2), P3) = 1/2 (distance (P1, P3), distance (P2, P3)) = 1/2 (6,
3) = 4.5

Similarly, we will calculate all distances.

131

Distance matrix:

(P1, P2) 0
P3 4.5 0
P4 9.5 7 0
P5 8.5 5 4 0

(P1, P2) P3 P4 P5

4 is smallest. P4 and P5 have smallest distance. So, we combine this two in
one cluster and recalculate distance matrix.

Distance matrix:
(P1, P2) 0
P3 4.5 0
(P4, P5) 9 6 0

(P1, P2) P3 (P4, P5)

4.5 is smallest. (P1, P2) and P3 have smallest distance. So, we combine this
two in one cluster and recalculate distance matrix.

Distance matrix:

(P1, P2, P3) 0
(P4, P5) 8 0

(P1, P2, P3) (P4, P5)

Now a single cluster remains (P1, P2,
P3, P4, P5)
Next, we represent the final
dendogram for average linkage as,

SUMMARY

In this chapter we have seen distance based model which is based on the
concept of distance. We have seen how to calculate the distance between
the data using Euclidean and manhattan distance. In this chapter we have
seen nearest neighbor method which is used to classify the data point in to
one of the classes based on the concept of minimum distance. Here we
have also seen K means algorithm in which we calculate the centroid and
then distance of each data point is calculated from this centroid. Data
points are clustered based on minimum distance and this process is
repeated unless and until there is no change in the clutsers. We have also
seen agglomerative clustering in which we calculate the distance matrix

132

which is used to find minimum distance. The data points having minimum
distance are clustered together and distance matrix is updated. This
process is repeated unless and until single cluster remains.

UNIT END EXERCISES

1. Describe the essential steps of K-means algorithm for clustering
analysis.

2. Apply K-means algorithm algorithm on given data for k=3.Use
c1(2),c2(16) and c3(38) as initial cluster centres.

Data: 2,4,6,3,31,12,15,16,38,35,14,21, 23,25,30

3. Apply K-means algorithm algorithm on given data for k=3.Use
c1(2),c2(16) and c3(38) as initial cluster centres.

Data: 2,4,6,3,31,12,15,16,38,35,14,21,23,25,30

4. Apply Agglomerative clustering algorithm on given data and draw
dendogram. Show three clusters with its allocated points. Use single
link method.

a b c d e F
a 0 √2 √10 √17 √5 √20
b √2 0 √8 3 1 √18
c √10 √8 0 √5 √5 2

d √17 1 √5 0 2 3

e √5 1 √5 2 0 √13
f √20 √18 2 3 √13 0

5. For the given set of points identify clusters using complete link and
average link using Agglomerative clustering.

A B

P1 1 1

P2 1.5 1.5

P3 5 5

P4 3 4

P5 4 4

P6 3 3.5

A B

133

LIST OF REFERENCES

 kdnuggets.com/2019/06/main-approaches-machine-learning-
models.html

 https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-
k-means-clustering

 https://www.displayr.com/what-is-hierarchical-clustering

 https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-
learning.

134

9
RULE BASED MODELS

Unit Structure
9.0 Objectives

9.1 Introduction to Logic based Model
9.1.1 Rule based classifier

9.1.2 Example of Rule based classifier

9.1.3 Application of Rule based classifier

9.1.4 Characteristics of Rule based classifier

9.1.5 Rule Building using Coverage Algorithm

9.2 Rule learning for subgroup discovery

9.2.1 Subgroup discovery

9.2.2 Working of Rule learning for subgroup discovery

9.2.3Measures in subgroup discovery

9.2.4 Weighted Coverage Algorithm for subgroup discovery

9.3 Introduction to Association rule mining

9.3.1 Apriori Algorithm

9.3.1.1 What is Frequent Itemset?

9.3.1.2 Steps for Apriori Algorithm

9.3.1.3 Apriori Algorithm Working

9.3.2 Association Rule Mining

9.3.2.1 How does Association Rule Mining work?

9.3.2.2 Association Rule Mining using Apriori Algorithm

9.3.2.3 Applications of Association Rule Mining

Summary

Unit End Exercises

List of References

9.0 OBJECTIVES

1. To identify label or class of a given example

2. To identify rules for subgroup discovery

3. To identify frequent item set.

9.1 INTRODUCTION TO LOGICAL MODELS

Logical models use a logical expression to divide the instance space into
segments and hence construct grouping models. A logical expression is

135

an expression that returns a Boolean value, i.e., a True or False outcome.
Once the data is grouped using a logical expression, the data is divided
into homogeneous groupings for the problem we are trying to solve. For
example, for a classification problem, all the instances in the group belong
to one class.

There are mainly two kinds of logical models: Tree models and Rule
models.

9.1.1 Rule based Classifier:
Rule models consist of a collection of implications or IF-THEN rules. For
tree-based models, the ‘if-part’ defines a segment and the ‘then-part’
defines the behaviour of the model for this segment. Rule models follow
the same reasoning.

Rule-based classifier classifies records using a set of IF-THEN rules. The
rules can be expressed in the following from −
(Condition) ->y

Where

- LHS of above rule is known as an antecedent or condition

- RHS of above rule is known as rule consequent

- Condition is a conjunction of attribute. Here condition consist of one
or more attribute tests which are logically ANDed.

- Y represents the class label

Assume a rule R1,
R1: IF Buying-Price = high AND Maintenance_Price = high AND Safety
= low THEN Car_evaluation = unacceptable

Rule R1 can also be rewritten as:
R1: (Buying-Price = high) ^ (Maintenance_Price = high)^ (Safety = low)-
>Car_evaluation = unacceptable

If the antecedent is true for a given record, then the consequent is given as
output.

9.1.2 Example of Rule based classifier:
Buying_P
rice

Maintenance_ Price Lug_Boot Safety Evaluation?

High High Small High Unacceptable
High High Small Low Unacceptable
Medium High Small High Acceptable
Low Medium Small High Acceptable
Low Low Big High Acceptable
Low Low Big Low Unacceptable
Medium Low Big Low Acceptable

136

High Medium Small High Unacceptable
High Low Big High Acceptable
Low Medium Big High Acceptable
High Medium Big Low Acceptable
Medium Medium Small Low Acceptable
Medium High Big High Acceptable
Low Medium Small Low Unacceptable

R1: (Buying-Price = high) ^ (Maintenance_Price = high)^ (Safety =
low)->Car_evaluation = unacceptable

R2: (Buying-Price = medium) ^(Maintenance_Price = high)
^(Lug_Boot= big)->Car_evaluation = acceptable

R3: (Buying-Price = high) ^(Lug_Boot = big)->Car_evaluation =
unacceptable

R4: (Maintenance_Price= medium) (Lug_Boot = big)^ (Safety = high)-
>Car_evaluation = acceptable

9.1.3 Application of Rule based classifier:
A record x is said to be covered by a rule, if all the attributes present in the
record satisfy the antecedent of the rule.

Car Buying_Price Maintenance_
Price

Lug_Boot Safety Evaluation?

1 High High Small low ?
2 medium High big Low ?
3 High medium big high ?
4 High medium small low ?

Car 1 triggers rule R1=>unacceptable

Car 2 triggers rule R2 =>acceptable

Car 3 triggers both R3 and R4

Car 4 triggers none of the rules

9.1.4 Characteristicsof Rule based classifier:
1. Mutually Exclusive rules- Rule based Classifier comprises of mutually
exclusive rules if the rules are independent of each other. Each and every
record is covered by at most one rule.

Solution:- Arrange rules in the order

Arrangement of Rules in the Order:
Rules are assigned a priority and based on this they are arranged and ranks
are associated. When a test record is given as a input to the classifier, a
label of the class with highest priority triggered rule is assigned. If the test
record does not trigger any of the rule then a default class is assigned.

Rule-based ordering:- In rule based ordering individual rules are ranked
based on their quality.

137

R1: (Buying-Price = high) ^ (Maintenance_Price = high)^ (Safety = low)-
>Car_evaluation = unacceptable

R2: (Buying-Price = medium) ^ (Maintenance_Price = high) ^
(Lug_Boot= big)->Car_evaluation = acceptable

R3: (Buying-Price = high) ^(Lug_Boot = big)->Car_evaluation =
unacceptable

R4: (Maintenance_Price= medium) (Lug_Boot = big)^ (Safety = high)-
>Car_evaluation = acceptable

Car Buying_Price Maintenance_
Price

Lug_Boot Safety Evaluation
?

3 High Medium big high ?

Car 3 triggers rule R3 first => unacceptable

Class-based ordering:- In class based ordering rules which belongs to the
same class are grouped together.

R2: (Buying-Price = medium) ^(Maintenance_Price = high)
^(Lug_Boot= big)->Car_evaluation = acceptable

R4: (Maintenance_Price= medium) (Lug_Boot = big)^ (Safety = high)-
>Car_evaluation = acceptable

R1: (Buying-Price = high) ^ (Maintenance_Price = high)^ (Safety =
low)->Car_evaluation = unacceptable

R3: (Buying-Price = high) ^(Lug_Boot = big)->Car_evaluation =
unacceptable

Car 3 triggers rule R4 =>acceptable

2. Exhaustive rules: It said to has a complete coverage for the rule based
Classifier if it accounts for each doable attribute values
combination. Every instance is roofed with a minimum of one rule.

Solution: - Use a default class

9.1.5 Rule Building using Coverage Algorithm:
Coverage Algorithm can be used to extract IF-THEN rules form the
training data. We do not require to generate a decision tree first. In this
algorithm, each rule for a given class covers many of the tuples of that
class.

As per the general strategy the rules are learned one at a time. For each
time rules are learned, a tuple covered by the rule is removed and the
process continues for the rest of the tuples. This is because the path to
each leaf in a decision tree corresponds to a rule.

138

Note − The Decision tree induction can be considered as learning a set of
rules simultaneously.

The Following is the sequential learning Algorithm where rules are
learned for one class at a time. When learning a rule from a class Ci, we
want the rule to cover all the tuples from class C only and no tuple form
any other class.

Algorithm: Coverage

Input:
D, a data set class-labeled tuples,
Att_vals, the set of all attributes and their possible values.

Output: A Set of IF-THEN rules.
Method:
Rule_set={ }; // initial set of rules learned is empty

for each class c do

repeat
Rule = Learn_One_Rule(D, Att_valls, c);

remove tuples covered by Rule form D;
until termination condition;

Rule_set=Rule_set+Rule; // add a new rule to rule-set
end for
returnRule_Set;

9.2 RULE LEARNING FOR SUBGROUP DISCOVERY

9.2.1 Subgroup discovery:

 Imagine you want to market the new version of a successful product.
You have a database of people who have been sent information about
the previous version, containing all kinds of demographic, economic
and social information about those people, as well as whether or not
they purchased the product.

 If you were to build a classifier or ranker to find the most likely
customers for your product, it is unlikely to outperform the majority
class classifier (typically, relatively few people will have bought the
product).

 However, what you are really interested in is finding reasonably sized
subsets of people with a proportion of customers that is significantly
higher than in the overall population. You can then target those people
in your marketing campaign, ignoring the rest of your database.

139

 Subgroups are subsets of the instance space – or alternatively,
mappings gˆ : X → {true,false} that are learned from a set of labelled
examples (xi ,label(xi)), where label : X → C is the true labelling
function.

 A good subgroup is one whose class distribution is significantly
different from the overall population. This is by definition true for pure
subgroups, but these are not the only interesting ones.

 Consider small dolphins data set with positive examples
p1 : Length = 3 ∧ Gills = no ∧ Beak = yes ∧ Teeth = many

p2 : Length = 4 ∧ Gills = no ∧ Beak = yes ∧ Teeth = many

p3 : Length = 3 ∧ Gills = no ∧ Beak = yes ∧ Teeth = few

p4 : Length = 5 ∧ Gills = no ∧ Beak = yes ∧ Teeth = many

p5 : Length = 5 ∧ Gills = no ∧ Beak = yes ∧ Teeth = few
and negatives

n1 : Length = 5 ∧ Gills = yes ∧ Beak = yes ∧ Teeth = many

n2 : Length = 4 ∧ Gills = yes ∧ Beak = yes ∧ Teeth = many

n3 : Length = 5 ∧ Gills = yes ∧ Beak = no ∧ Teeth = many

n4 : Length = 4 ∧ Gills = yes ∧ Beak = no ∧ Teeth = many

n5 : Length = 4 ∧ Gills = no ∧ Beak = yes ∧ Teeth = few

 For instance, one could argue that the complement of a subgroup is as
interesting as the subgroup itself: in our dolphin example, the concept
Gills = yes, which covers four negatives and no positives, could be
considered as interesting as its complement Gills = no, which covers
one negative and all positives.

 This means that we need to move away from impurity-based
evaluation measures.

9.2.2 Working of Rule learning for subgroup discovery:
Classification identifies a rule such that it forms a pure class. From a
training set rules are used to identify pure subset of examples means only
positive or negative instances.This is called subgroups. Based on rules we
have to find subset of instance space. Along with finding subgroups we
need to find interesting patterns.Means if we apply one rule we get one
output and applying second rule we get other output. If subgroup is
interesting pattern then its complementary is also an interesting pattern.

Eg Gills=yes it identifies 4 negative and 0 positive. If we are assuming
that it is an interesting pattern then its complementary Gills=No. Here we
will assume that it will identify 5 positive, but it may not be true. It may
identify 5 positive and 1 negative. means Complementary of rule is not
complementary of subgroup.

140

9.2.3 Measures in subgroup discovery:
If we draw a graph considering positives along y axis and negatives along
x axis. suppose there are different subgroups are formed. Any subgroup
that is present on diagonalhave equal proportion of positives to overall
population.

1. Precision: Any subgroup that is present on diagonal have same
propotion of positives to overall positives. Examples which are present
on above diagonal has more number of positives and examples that
are below diagonal have less number of positives.
Precision = | − |

2. Avearge recall: The subgroups that are present on diagonal have
avearge recall of 0.5
Average recall = | − 0.5|
If above value is positive means the exmaples are present on above
diagonal else below diagonal.

3. Weighted relative accuracy: Here accuracy is assigned to each
subgroup and one subgroup is compared to other one.

4. Weighted relative accuracy = pos*neg (true positive rate – false
positive rate)

9.2.4 Weighted Coverage Algorithm for subgroup discovery:
The main difference in rule based classification and subgroup discover is
overlapping rules.In classification rules are not overlapped. We have seen
coverage algorithm in section 9.1. Whenever new rule is generated, we
identify the instances that are satisfied by the rule then we remove those
examples. In subgroup discovery the rules are overlapped. Whenever new
rule is generated then examples are not directly removed. For this purpose
we are usingweighted coverage algorithm. Herefor each example we are
assigning weight as 1. Whenever rule is generated and example is covered
by rule then weight of that example is halved. When it is 0 then we
remove that example from set.

Algorithm: Weighted coverage
Input: Data set D
Output: Rule set R
R= null
While some examples in D, have weight =1 do

r= LearnRule(D)// Coverage algorithm of classification
append r to the end R
decrease weights of examample covered by r
return R

141

9.3 INTRODUCTION TO ASSOCIATION RULE MINING

 Associations are things that usually occur together. For example, in
market basket analysis we are interested in items frequently bought
together. An example of an association rule is if milk then bread,
stating that customers who buy milk tend to also buybread.

 In a bakery shop most clients will buy cake. This means that there will
be many frequent item sets involving cake, such as {candle,cake}.

 This might suggest the construction of an association rule if
candlethen cake – however, this is predictable given that {cake} is
already a frequent item set (and clearly at least as frequent as
{candle,cake}).

 Of more interest would be the converse rule if cake then candle which
expresses that a considerable proportion of the people buying cake also
buy a candle.

9.3.1 Apriori Algorithm:
The Apriori algorithm uses frequent item sets to generate association
rules, and it is designed to work on the databases that contain transactions.
With the help of these association rule, it determines how strongly or how
weakly two objects are connected. This algorithm uses a breadth-first
search and Hash Tree to calculate the itemset associations efficiently. It
is the iterative process for finding the frequent item sets from the large
dataset.

This algorithm was given by the R. Agrawal and Srikant in the
year 1994. It is mainly used for market basket analysis and helps to find
those products that can be bought together. It can also be used in the
healthcare field to find drug reactions for patients.

9.3.1.1 What is Frequent Itemset?:
Frequent itemsets are those items whose support is greater than the
threshold value or user-specified minimum support. It means if A & B are
the frequent itemsets together, then individually A and B should also be
the frequent itemset.

Suppose there are the two transactions: A= {1,2,3,4,5}, and B= {2,3,7}, in
these two transactions, 2 and 3 are the frequent itemsets.

9.3.1.2 Steps for Apriori Algorithm:
Below are the steps for the apriori algorithm:

Step-1: Determine the support of itemsets in the transactional database,
and select the minimum support and confidence.

142

Step-2: Take all supports in the transaction with higher support value
than the minimum or selected support value.

Step-3: Find all the rules of these subsets that have higher confidence
value than the threshold or minimum confidence.

Step-4: Sort the rules as the decreasing order of lift.

9.3.1.3 Apriori Algorithm Working:
We will understand the apriori algorithm using an example and
mathematical calculation:

Example: Suppose we have the following dataset that has various
transactions, and from this dataset, we need to find the frequent itemsets
and generate the association rules using the Apriori algorithm given
minimum support 2 and minimum confidence 50%

TID ITEM SETS
T1 A,B
T2 B,D
T3 B,C
T4 A,B,D
T5 A,C
T6 B,C
T7 A,C
T8 A,B,C,E
T9 A,B,C

Solution:
Step-1: Calculating C1 and L1:

 In the first step, we will create a table that contains support count (The
frequency of each itemset individually in the dataset) of each itemset
in the given dataset. This table is called the Candidate set or C1.

Itemset Support_count
A 6
B 7
C 5
D 2
E 1

Now, we will take out all the itemsets that have the greater support count
that the Minimum Support (2). It will give us the table for the frequent
itemset L1.

Since all the itemsets have greater or equal support count than the
minimum support, except the E, so E itemset will be removed.

143

Itemset Support_count
A 6
B 7
C 5
D 2

Step-2: Candidate Generation C2, and L2:
In this step, we will generate C2 with the help of L1. In C2, we will create
the pair of the itemsets of L1 in the form of subsets.

After creating the subsets, we will again find the support count from the
main transaction table of datasets, i.e., how many times these pairs have
occurred together in the given dataset. So, we will get the below table for
C2:

Itemset Support_count
{A,B} 4
{A,C} 4
{A,D} 1
{B,C} 4
{B,D} 2
{C,D} 0

Again, we need to compare the C2 Support count with the minimum
support count, and after comparing, the itemset with less support count
will be eliminated from the table C2. It will give us the below table for L2

Itemset Support_count
{A,B} 4
{A,C} 4
{B,C} 4
{B,D} 2

Step-3: Candidate generation C3, and L3:
For C3, we will repeat the same two processes, but now we will form the
C3 table with subsets of three itemsets together, and will calculate the
support count from the dataset. It will give the below table:

Itemset Support_count
{A,B,C} 2
{B,C,D} 1
{A,C,D} 0
{A,B,D} 0

Now we will create the L3 table. As we can see from the above C3 table,
there is only one combination of itemset that has support count equal to
the minimum support count. So, the L3 will have only one combination,

i.e., {A, B, C}.

144

Step-4: Finding the association rules for the subsets:

To generate the association rules, first, we will create a new table with the
possible rules from the occurred combination {A, B.C}. For all the rules,
we will calculate the Confidence using formula sup(A ^B)/A. After
calculating the confidence value for all rules, we will exclude the rules
that have less confidence than the minimum threshold(50%).

Consider the below table:

Rules Support Confidence

A ^B →
C

2 Sup{(A ^B) ^C}/sup(A ^B)= 2/4=0.5=50%

B^C →
A

2 Sup{(B^C) ^A}/sup(B ^C)= 2/4=0.5=50%

A^C →
B

2 Sup{(A ^C) ^B}/sup(A ^C)= 2/4=0.5=50%

C→ A
^B

2 Sup{(C^(A ^B)}/sup(C)= 2/5=0.4=40%

A→
B^C

2 Sup{(A^(B ^C)}/sup(A)= 2/6=0.33=33.33%

B→
B^C

2 Sup{(B^(B ^C)}/sup(B)= 2/7=0.28=28%

As the given threshold or minimum confidence is 50%, so the first three
rules A ^B → C, B^C → A, and A^C → B can be considered as the
strong association rules for the given problem.

9.3.2 Association Rule Mining:
Association rule learning is a type of unsupervised learning technique that
checks for the dependency of one data item on another data item and maps
accordingly so that it can be more profitable. It tries to find some
interesting relations or associations among the variables of dataset. It is
based on different rules to discover the interesting relations between
variables in the database.

The association rule learning is one of the very important concepts
of machine learning, and it is employed in Market Basket analysis, Web
usage mining, continuous production, etc. Here market basket analysis
is a technique used by the various big retailer to discover the associations
between items. We can understand it by taking an example of a

145

supermarket, as in a supermarket, all products that are purchased together
are put together.

For example, if a customer buys bread, he most likely can also buy butter,
eggs, or milk, so these products are stored within a shelf or mostly nearby.
For Association rule learning Apriori algorithm can be used.

9.3.2.1 How does Association Rule Mining work?
Association rule learning works on the concept of If and Else Statement,
such as if A then B.

Here the If element is called antecedent, and then statement is called
as Consequent. These types of relationships where we can find out some
association or relation between two items is known as single cardinality. It
is all about creating rules, and if the number of items increases, then
cardinality also increases accordingly. So, to measure the associations
between thousands of data items, there are several metrics. These metrics
are given below:

o Support
o Confidence
o Lift

Let's understand each of them:

Support:
Support is the frequency of A or how frequently an item appears in the
dataset. It is defined as the fraction of the transaction T that contains the
itemset X. If there are X datasets, then for transactions T, it can be written
as:

Support(X) = Freq(X) / T

Confidence:
Confidence indicates how often the rule has been found to be true. Or how
often the items X and Y occur together in the dataset when the occurrence
of X is already given. It is the ratio of the transaction that contains X and
Y to the number of records that contain X.

Confidence = Freq(X,Y) / Freq(X)

Lift:
It is the strength of any rule, which can be defined as below formula:

Lift = Support (X,Y) / (Support(X) * Support(Y))

It is the ratio of the observed support measure and expected support if X
and Y are independent of each other. It has three possible values:

 If Lift= 1: The probability of occurrence of antecedent and consequent
is independent of each other.

146

 Lift>1: It determines the degree to which the two itemsets are
dependent to each other.

 Lift<1: It tells us that one item is a substitute for other items, which
means one item has a negative effect on another.

9.3.2.2 Association Rule Mining using Apriori Algorithm:
This algorithm uses frequent datasets to generate association rules. It is
designed to work on the databases that contain transactions. This
algorithm uses a breadth-first search and Hash Tree to calculate the
itemset efficiently.

It is mainly used for market basket analysis and helps to understand the
products that can be bought together. It can also be used in the healthcare
field to find drug reactions for patients.

9.3.2.3 Applications of Association Rule Mining:
It has various applications in machine learning and data mining. Below are
some popular applications of association rule learning:

o Market Basket Analysis: It is one of the popular examples and
applications of association rule mining. This technique is commonly
used by big retailers to determine the association between items.

o Medical Diagnosis: With the help of association rules, patients can be
cured easily, as it helps in identifying the probability of illness for a
particular disease.

o Protein Sequence: The association rules help in determining the
synthesis of artificial Proteins.

o It is also used for the Catalog Design and Loss-leader Analysis and
many more other applications.

SUMMARY

In this chapter we have seen rule based model. In rule based model rules
are defined in the form of if-then. Rules are used to identify the label or
class of a given example. In classification when a new rule is generated
then the example that covers this rule is eliminated from training set. In
subgroup discovery we identify a pure class means all examples are
corresponding to eithrt positive label or negative label. In subgroup
discovery when new rule is generated the example which covers this rule
is not directly eliminated. Weight of this example is halved and this
process is repeated till it becomes zero. When a weight becomes zero then
that example is eliminated from training set. This algorithm is called as
weighted coverage algorithm. In this chapter we have also seen
association rule mining. In this we find the frequent item set using apriori
algorithm. Then using these frequent item set rules are defined.

147

UNIT END EXCERCISES

1. Find frequent item set and association rules for minimum support
count 2 and minimum confidence is 60%

TID Items
T1 i1,i2,i5
T2 i2,i4
T3 i2,i3
T4 i1,i2,i4
T5 i1,i3
T6 i2,i3
T7 i1,i3
T8 i1,i2,i3,i5
T9 i1,i2,i3

LIST OF REFERENCES

 https://www.geeksforgeeks.org/rule-based-classifier-machine-learning/

 Using rule learning for subgroup
discovery,BrankoKavšek (2004) Using rule learning for subgroup
discovery.

 https://www.upgrad.com/blog/association-rule-mining-an-overview-and-
its-applications/

 https://www.educba.com/association-rules-in-data-mining/

 https://medium.com/analytics-vidhya/association-rule-mining-
7f06401f0601\

148

10

TREE BASED MODELS

Unit Structure
10.0 Objectives

10.1 Introduction to tree model

10.2 Decision Trees

10.2.1. Where Decision Tree is applicable?

10.2.2. Decision Tree Representation

10.2.3. Attribute Selection Measure

10.2.4. Avoid Over fitting in classification (Tree pruning)

10.2.5. Strengths of Decision Tree Method

10.2.6. Weakness of Decision Tree Method

10.2.7 Constructing Decision Trees

10.2.8 Example of Classification Tree Using ID3

10.2.9 Example of Decision Tree Using Gini Index

10.3 Ranking and Probability Estimation Trees

10.3.1 Choosing a labeling based on costs

10.4 Regression Trees

10.4.1 Example of Regression Tree

10.5 Clustering Trees

Summary

Unit End Questions

List of References

10.0 OBJECTIVES

 Gain conceptual picture of decision trees, regression trees and
clustering trees.

 Learn to predict the class using decision tree.

 Learn to predict value of continuous variable by using regression tree.

 Learn to identify the ranking.

10.1 INTRODUCTION TO TREE MODEL

 A tree model is a hierarchical structure of conditions, where leafs
contain tree outcome.

149

 They represent recursive divide-and-conquer strategies.

 Tree models are among the most popular models in machine learning,
because they are easy to understand and interpret:

 Tree models can be seen as a particular type of rule model where the
if-parts of the rules are organised in a tree structure.

 Both Tree models and Rule models use the same approach to
supervised learning.

 The approach can be summarised in two strategies: we could first find
the body of the rule (the concept) that covers a sufficiently
homogeneous set of examples and then find a label to represent the
body.

 Alternately, we could approach it from the other direction, i.e., first
select a class we want to learn and then find rules that cover examples
of the class.

10.2 DECISION TREES

 Decision trees are very strong and most suitable tools for classification
and prediction. The attractiveness of decision trees is due to the fact
that, in contrast to neural network, decision trees represent rules.

 Rules are represented using linguistic variables so that user
interpretability may be achieved. By comparing the records with the
rules one can easily find a particular category to which the record
belongs to.

 In some applications, the accuracy of a classification or prediction is
the only thing that matters in such situations we do not necessarily care
how or why the model works. In other situations, the ability to explain
the reason for a decision is crucial, in marketing one has described the
customer segments to marketing professionals, so that they can use
this knowledge to start a victorious marketing campaign.

 This domain expert must acknowledge and approve this discovered
knowledge and for this we need good descriptions. There are a variety
of algorithms for building decision trees that share the desirable
quality of interpretability (ID3).

10.2.1 Where Decision Tree is applicable? :
Decision tree method is mainly used for the tasks that possess the
following properties.

 The tasks or the problems in which the records are represented by
attribute-value pairs.

 Records are represented by a fixed set of attribute and their value
Example: For ‘temperature’ attribute the value is ‘hot’.

150

 When there are small numbers of disjoint possible values for each
attribute, then decision tree learning becomes very simple.

Example: Temperature attribute takes three values as hot, mild and
cold.

 Basic decision tree algorithm may be extended to allow real valued
attributes as well.

Example: we can define floating point temperature.

 An application where the target function takes discrete output values.

 In Decision tree methods an easiest situation exists, if there are
only two possible classes.

Example: Yes or No

 When there are more than two possible output classes then
decision tree methods can also be easily extended.

 A more significant extension allows learning target functions with
real valued outputs, although the application of decision trees in
this area is not frequent.

 The tasks or the problems where the basic requirement is the
disjunctive descriptors.

 Decision trees naturally represent disjunctive expressions.

 In certain cases where the training data may contain errors.

 Decision tree learning methods are tolerant to errors that can be a
classification error of training records or attribute-value
representation error.

 The training data may be incomplete as there are missing attribute
values

 Although some training records have unknown values, decision
tree methods can be used.

10.2.2 Decision Tree Representation:
Decision tree is a classifier which is represented in the form of a tree
structure where each node is either a leaf node or a decision node.

 Leaf node represents the value of the target or response attribute
(class) of examples.

 Decision node represents some test to be carried out on a single
attribute-value, with one branch and sub tree for each possible
outcome of the test.

Decision tree generates regression or classification models in the form of a
tree structure. Decision tree divides a dataset into smaller subsets with
increase in depth of tree. The final decision tree is a tree with decision
nodes and leaf nodes. A decision node (e.g., Buying_Price) has two or
more branches (e.g., High, Medium and Low). Leaf node (e.g., Evaluation)

151

shows a classification or decision. The topmost decision node in a tree
which represents the best predictor is called root node. Decision trees can
be used to represent categorical as well as numerical data.

1. Root Node: It represents entire set of records or dataset and this is
again divided into two or more similar sets.

2. Splitting: Splitting procedure is used to divide a node into two or more
sub-nodes depending on the criteria.

3. Decision Node: A decision node is a sub-node which is divided into
more sub-nodes.

4. Leaf/ Terminal Node: Leaf node is a node which is not further divided
or a node with no children.

5. Parent and Child Node: Parent node is a node, which is split into sub-
nodes and sub-nodes are called as child of parent node.

6. Branch / Sub-Tree: A branch or sub-tree is a sub part of decision tree.

7. Pruning: Pruning method is used to reduce the size of decision trees by
removing nodes.

10.2.3 Attribute Selection Measure:
1) Gini Index:

 All attributes are assumed to be continuous valued.

 It is assumed that there exist several possible split values for each
attribute.

 Gini index method can be modified for categorical attributes.

 Gini is used in Classification and Regression Tree (CART).

If a data set T contains example from n classes, gini index, gini (T) is
defined as,

Gini (T) =1- ∑ (Pj) (Eq.1)

In the above equation Pjrepresents the relative frequency of class j in T.
After splitting T into two subsets T1 and T2 with sizes N1 and N2,gini
index of split data is,

Low

Small Big Low High

Buying_Price

Acceptable SafetyLug-Boot

AcceptableUnacceptableAcceptableUnacceptable

High
Medium

152

Gini split (T) = (1) + (2) (Eq.2)

The attribute with smallest gini split (T) is selected to split the node.

2) Information Gain (ID3):
In this method all attributes are assumed to be categorical. The method can
be modified for continuous valued attributes. Here we select the attribute
with highest information gain.

Assume there are 2 classes P and N. Let the set of records S contain p
records of class P and n records of N.

The amount of information required to decide if a random record in S
belongs to P or N is defined as,

I (p, n) = − log2 − log2 (Eq.3)

Assume that using attribute A, a set S will be partitioned in to sets
{s1, s2, ----sk}

If Si has pi records of P and ni records of N, the entropy or the expected
information required to classify objects in all subtrees Si is,

E (A) = ∑ I (pi, ni) (Eq.4)

Entropy (E):- Expected amount of information (in bits) needed to assign a
class to a randomly drawn object in S under the optimal shortest length
code.

Gain (A):- Measures reduction in entropy achieved because of split.
Choose split that achieves most reduction (maximum Gain).

Gain (A) = I (p, n)-E (A) (Eq.5)

10.2.4. Avoid Overfitting in classification (Tree pruning):

 The generated tree may overfit the training data.
 If there are too many branches then some may reflect anomalies

due to noise or outliers.

 Overfitting result in poor accuracy for unseen samples.

 There are two approaches to avoid overfitting, prune the tree so that it
is not too specific.

 Prepruning (prune while building tree):-

Stop tree construction early do not divide a node if this would
result in the goodness measure falling below threshold.

 Postpruning (prune after building tree):-

153

Fully constructed tree get a sequence of progressively pruned trees.

10.2.5. Strengths of Decision Tree Method:-

 Able to generate understandable rules

 Performs classification without requiring much computation.

 Able to handle both continuous and categorical variables.

 Decision tree clearly indicates which fields are most important for
prediction or classification.

10.2.6. Weakness of Decision Tree Method:-

 Not suitable for prediction of continuous attribute

 Perform poorly with many class and small data

 Computationally expensive to train

10.2.7 Constructing Decision Trees:
The ID3 algorithm starts with the original set S as the root node. On each
iteration of the algorithm, it iterates through every unused attribute of the
set S and calculates the entropy (or information gain) of that attribute.
Algorithm next select the attribute which has the smallest entropy (or
largest information gain) value. The set S is then divided by the chosen
attribute (e.g. Income is less than 20 K , Income is between 20 K and 40
K, Income is greater than 40 K) to produce subsets of the data. The
algorithm is recursively called for each subset, considering the attributes
which are not selected before.

The stopping criteria for recursion can be one of these situations:

 When all records in the subset belongs to the same class (+ or -), then
the node is converted into a leaf node and labeled with the class of the
records.

 When we have selected all the attributes , but the records still do not
belong to the same class (some are + and some are -), then the node is
converted into a leaf node and labeled with the most frequent class of
the records in the subset

 When there are no records in the subset, this is due to the non coverage
of a specific attribute value for the record in the parent set, for example
if there was no record with income = 40 K. Then a leaf node is
generated, and labeled with the most frequent class of the record in the
parent set.

Decision tree is generated with each non-terminal node representing the
selected attribute on which the data was split, and terminal nodes
representing the class label of the final subset of this branch.

154

Summary
Entropy of each and every attribute is calculated using the data set
1. Divide the set S into subsets using the attribute for which the resulting

entropy (after splitting) is minimum (or, equivalently, information gain
is maximum)

2. Make a decision tree node containing that attribute Recurse on subsets
using remaining attributes.

10.2.8 Example of Classification Tree Using ID3:
Example 1:
Suppose we want ID3 to evaluate car database as whether the car is
acceptable or not. The target classification is “Should we accept car?”
which can be acceptable or unacceptable.

Buying_Price Maintenance_
Price

Lug_Boot Safety Evaluation?

High High Small High Unacceptable
High High Small Low Unacceptable
Medium High Small High Acceptable
Low Medium Small High Acceptable
Low Low Big High Acceptable
Low Low Big Low Unacceptable
Medium Low Big Low Acceptable
High Medium Small High Unacceptable
High Low Big High Acceptable
Low Medium Big High Acceptable
High Medium Big Low Acceptable
Medium Medium Small Low Acceptable
Medium High Big High Acceptable
Low Medium Small Low Unacceptable

Class P: Evaluation = “Acceptable”
Class N: Evaluation = “Unacceptable”
Total records = 14
No. of records with Acceptable =9 and Unacceptable =5

I (p, n) = − log2 − log2

I (9, 5) = − log2 − log2

= 0.940

Step 1->

1. Compute entropy for Buying_Price

For Buying_Price = High

Pi=2 and ni =3

155

I (pi, ni) = I (2, 3) = − log2 − log2 = 0.971

Similarly we will calculate I (pi, ni) for Medium and Low.

Buying_Price pi ni I(pi, ni)
High 2 3 0.971
Medium 4 0 0
Low 3 2 0.971

E (A) = ∑ I (pi, ni)

E(Buying_Price)= I(2,3)+ I(4,0)+ I(3,2)= 0.694

Gain(S, Buying_Price) = I (p, n)-E (Buying_Price) =0.940-0.694 =0.246
Similarly, Gain (S, Maintenance_ Price) = 0.029, Gain (S, Lug_Boot) =
0.151, Gain (S, Safety) = 0.048

Since Buying_Price is the highest we select Buying_Price as the root
node.

Step2->

As attribute Buying_Price at root, we have to decide on remaining tree
attribute for High branch.

Buying_Price Maintenance_
Price

Lug_Boot Safety Evaluation?

High High Small High Unacceptable
High High Small Low Unacceptable
High Medium Small High Unacceptable
High Low Big High Acceptable
High Medium Big Low Acceptable

No. Of records with Acceptable =2 and Unacceptable =3

I(p,n) = − log2 − log2

I(2,3) = − log2 − log2

= 0.971

Buying_Price

High

Medium
Low

156

1. Compute entropy for Maintenance_ Price

Maintenance_
Price

pi ni I(Pi, ni)

High 0 2 0
Medium 1 1 1
Low 1 0 0

E(Maintenance_ Price)= I(0,2)+ I(1,1)+ I(1,0)= 0.4

Gain(SHigh, Maintenance_ Price) = I (p, n)-E(Maintenance_ Price) =0.971-
0.4 =0.571

2. Compute entropy for Lug_Boot

Pi=0 and ni =3

I (Pi, ni) = I(0,3)= 0

Lug_Boot pi ni I(Pi, ni)
Small 0 3 0
Big 2 0 0

E (Lug_Boot) = I (0,3)+ I(2,0)= 0

Gain (S High, Lug_Boot) = I (p, n)- E(Lug_Boot) = 0.971- 0 = 0.971

3. Compute entropy for Safety
pi = 1 and ni = 2
I (pi, ni) = I (1,2) = 0.918

Safety pi ni I(Pi, ni)
High 1 2 0.918
Low 1 1 1

E (Safety) = I (1,2)+ I(1,1)= 0.951

Gain(S High, Safety) =I (p, n)-E (Safety) =0.971-0.951 =0.02

Since Lug_Boot is the highest we select Lug_Boot as a next node below
High branch.

Buying_Price

High

Medium
Low

Lug_Boot

Small
High

Big

157

Step 3->
Consider now only Maintenance_ Price and Safety for Buying_Price =
Medium

Buying_Price Maintenance_
Price

Lug_Boot Safety Evaluation?

Medium High Small High Acceptable
Medium Low Big Low Acceptable
Medium Medium Small Low Acceptable
Medium High Big High Acceptable

Since for any combination of values of Maintenance_ Price and Safety,
Evaluation? value is Acceptable, so we can directly write down the answer
as Acceptable.

Step 4->
Consider now only Maintenance_ Price and Safety for Buying_Price =
Low

Pi=3 and ni =2

I(Pi, ni) = I(3,2)= 0.970

1. Compute entropy for Safety

Safety pi ni I(Pi, ni)
High 3 0 0
Low 0 2 0

E (Safety) = I (3, 0) + I (0, 2) = 0

Gain (S Low, Safety) =I(p,n)-E(Safety) =0.970-0 =0.970

Buying_Price Maintenance_
Price

Lug_Boot Saftey Evaluation?

Low Medium Small High Acceptable
Low Low Big High Acceptable
Low Low Big Low Unacceptable
Low Medium Big High Acceptable
Low Medium Small Low Unacceptable

Buying_Price

High

Medium
Low

Lug_Boot

Small Big

Acceptable

158

2. Compute entropy for Maintenance_ Price

Maintenance_
Price

pi ni I(Pi, ni)

High 0 0 0
Medium 2 1 0.918
Low 1 1 1

E(Maintenance_ Price)= I(0,0)+ I(2,1)+ I(1,1)= 0.951

Gain (S Low, Maintenance_ Price) =I (p, n)-E (Maintenance_ Price)
=0.970-0.951 =0.019

Since, Safety is the highest we select Safety below Low branch.

Now we will check the value of ‘Evaluation?’ from the database, for all
branches,

Buying_Price=High and Lug_Boot =Small -> Evaluation? = Unacceptable

Buying_Price=High and Lug_Boot =Big -> Evaluation? =Acceptable

Buying_Price=Low and Safety =Low -> Evaluation? = Unacceptable

Buying_Price= Low and Safety = High -> Evaluation? = Acceptable

Final Decision Tree is

Buying_Price

High

Medium
Low

Lug_Boot

Small Big

Low

Small
Big Low High

Buying_Price

Acceptable SafetyLug-Boot

Acceptable
e

UnacceptableAcceptableUnacceptable

High
Medium

High

Safety

Low

Acceptable

159

10.2.9 Example of Decision Tree Using Gini Index:
Example1:
Create a decision tree using Gini Index to classify following dataset.

Sr.No. Income Age Own Car
1 Very High Young Yes
2 High Medium Yes
3 Low Young No
4 High Medium Yes
5 Very High Medium Yes
6 Medium Young Yes
7 High Old Yes
8 Medium Medium No
9 Low Medium No
10 Low Old No
11 High Young Yes
12 Medium Old No

In this example there are two classes Yes and No.

No. Of records for Yes = 7

No. Of records for No = 5

Total No. Of records = 12
Now we will calculate Gini of the complete database as,

Gini (T) = 1 − + = 0.48

Next we will calculate Split for all attributes, i.e. Income and Age.
Income->

Split = (ℎ) + (ℎ) + () +()
= [1 − +] + [1 − +] + 1 −+ + [1 − +]
=0.1125

Age->

Split = () + () + ()

160

= 1 − + + 1 − + + 1 −+
=0.4375

Split value of Income is smallest, so we will select Income as root node.

From the database we can see that,

Own Car = Yes for Income = Very High, so we can directly write down
‘Yes’ for Very High branch.

Own Car = Yes for Income = High, so we can directly write down ‘Yes’
for High branch.

Own Car = No for Income = Low, so we can directly write down ‘No’ for
Low branch.

Since Income is taken as root node, now we have to decide on the Age
attribute, so we will take Age as next node below Medium branch.

From the database we can see that,

Own Car = Yes for Income = Medium and Age = Young, so we can
directly write down ‘Yes’ for Young branch.

Own Car = No for Income = Medium and Age = Medium, so we can
directly write down ‘No’ for medium branch.

Own Car = No for Income = Medium and Age = Old, so we can directly
write down ‘No’ for Old branch.

Final Decision Tree is,

Yes Yes No
Age

Income

Young

Medium

Old

Income

VeryHigh

High
Low Medium

VeryHigh

High
Low Medium

161

10.3 RANKING AND PROBABILITY ESTIMATION
TREES

 Decision trees divide the instance space into segments, by learning
ordering on those segments the decision trees can be turned into
rankers.

 Decision trees can access local class distribution, means how many
number of +ve and –ve instances are there in each class.

 Decision trees are directly used to construct leaf ordering in an optimal
way in the training data.

 One commonly used procedure is empirical probability ,means if +ve
and –ve instances in a class are equal then give highest priority to
positive class(means use ranking).

 The ranking obtained from the empirical probabilities in the leaves of
a decision tree yields a convex ROC curve on the training data.

Figure 10.3.1.a Figure 10.3.1.b

 Consider the tree in above figure 10.3.1.a. Each node is labelled with
the numbers of positive and negative examples covered by it: so, for
instance, the root of the tree is labelled with the overall class
distribution (50 positives and 100 negatives), resulting in the trivial

Income

VeryHigh

High
Low Medium

Age

Young
Medium

Old

Yes No No

Yes Yes No

162

ranking [50+,100-]. The corresponding one-segment coverage curve is
the ascending diagonal figure 10.3.1.b.

 Adding split (1) refines this ranking into [30+,35-][20+,65-], resulting
in a two-segment curve.

 Adding splits (2) and (3) again breaks up the segment corresponding to
the parent into two segments corresponding to the children.

 However, the ranking produced by the full tree [15+,3-][29+,10-
][5+,62-][1+,25-] is different from the left-to-right ordering of its
leaves, hence we need to reorder the segments of the coverage curve,
leading to the top-most, solid curve. This reordering always leads to a
convex coverage curve

 Figure 10.3.1.a is an abstract representation of a tree with numbers of
positive and negative examples covered in each node. Binary splits are
added to the tree in the order indicated.

 Figure 10.3.1.b shows after adding a split to the tree how it will add
new segments to the coverage curve as indicated by the arrows. After a
split is added the segments may need reordering, and so only the solid
lines represent actual coverage curves.

10.3.1 Choosing a labelling based on costs
 Assume the training set class ratio clr = 50/100 is representative. We

have a choice of five labellings, depending on the expected cost ratio
C=CFN / CFP of misclassifying a positive in proportion to the cost of
misclassifying a negative:

+-+- would be the labelling of choice if C= 1, or more generally if10/29 <
C< 62/5;
+-++would be chosen if 62/5<C< 25/1;
++++would be chosen if 25/1 < C; i.e., we would always predict positive
if false negatives are more than 25 times as costly as false positives,
because then even predicting positive in the second leaf would reduce
cost;
--+-would be chosen if 3/15<C< 10/29;

----would be chosen if C< 3/15; i.e., we would always predict negative if
false positives are more than 5 times as costly as false negatives, because
then even predicting negative in the third leaf would reduce cost.

163

Figure 10.3.2.a Figure 10.3.2.b

 Figure 10.3.2.ais used to achieve the labeling+-++ we don’t need the
right-most split, which can therefore be pruned away.

 In figure 10.3.2.bpruning doesn’t affect the chosen operating point, but
it does decrease the ranking performance of the tree.

 If we know class distribution in leaves of feature tree then it is
converted in to Rankers, Probability estimation and Classifiers.

 Rankers will give simple order to leaves in descending order based on
empirical probability

 Probability estimation predicts empirical probabilities of each leave
and calculate Laplace or m estimation to smooth curve

 In classifier we have to choose the operating conditions and find
operating point that fits the condition.

 First and foremost, I would concentrate on getting good ranking
behaviour, because from a good ranker I can get good classification
and probability estimation, but not necessarily the other way round.

 I would therefore try to use an impurity measure that is distribution-
insensitive, such as pGini; if that isn’t available and I can’t hack the
code, I would resort to oversampling the minority class to achieve a
balanced class distribution.

 I would disable pruning and smooth the probability estimates by
means of the Laplace correction (or the m-estimate).

 Once I know the deployment operation conditions, I would use these
to select the best operating point on the ROC curve (i.e., a threshold on
the predicted probabilities, or a labeling of the tree).

 (optional) Finally, I would prune away any sub tree whose leaves all
have the same label.

10.4 REGRESSION TREES

Classification trees are used to divide the dataset into classes belonging to
the target variable. Mainly the target variable has two classes that can be
yes or no. When the target variable type is categorical classification trees
are used.

164

In certain applications the target variable is numeric or continuous in that
case regression trees are used. Let’s take an example of prediction of
price of a flat. Hence regression trees are used for problems or tasks where
we want to predict some data instead of classifying the data.

Based on the similarity of the data the records are classified in a standard
classification tree. Let’s take an example of an Income tax evades. In this
example we have two variables, Income and marital status that predict if a
person is going to evade the income tax or not. In our training data if it
showed that 85% of people who are married does not evade the income
tax, we split the data here and Marital status becomes a root node in tree.
Entropy or Ginny index is used in classification trees.

The main basic working of regression tree is to fit a model. The target or
response variable does not have classes so a regression model is fit using
each independent variable to the target variable. Then the data is split at
various split points for each independent variable. At each split point sum
of squared errors (SSE) is calculated by taking the square of the difference
between predicted and actual value. The criteria for root node is to select
the node which is having minimum SSE among all split point errors. The
further tree is built using the recursive procedure.

10.4.1 Example of Regression Tree:

Example 1:

Buying_Price Lug_Boot Safety Maintenance_ Price?
(in thousand)

Low Small High 25
Low Small Low 30
Medium Small High 46
High Small High 45
High Big High 52
High Big Low 23
Medium Big Low 43
Low Small High 35
Low Big High 38
High Big High 46
Low Big Low 48
Medium Small Low 52
Medium Big High 44
High Small Low 30

Standard deviation ->
A decision tree is built up top down from root node and involved
partitioning the data into subsets that contain instances with similar values.
We use SD to calculate homogeneity of a numerical sample.

SD, S=
∑()

= 9.32

165

SD Reduction ->

It is based on the decrease in SD after a dataset is split on an attribute.
Constructing a tree is all about finding attribute that returns highest SDR.

Step 1->
SD (Maintenance_Price?) = 9.32

Step 2->
The dataset is then split on the different attribute.SD for each branch is
calculated. The resulting SD is subtracted from SD before split.

Maintenance_
Price(SD)

Buying_Price

Low 7.78

Medium 3.49
High 10.87

SD(Maintenance_Price, Buying_Price)

=P(Low)SD(Low)+P(Medium)SD(Medium)+P(High)SD(High)

= ∗ 7.78 + ∗ 3.49 + ∗ 10.87 = 7.66

SDR = SD(Maintenance_ Price)- SD(Maintenance_ Price,
Buying_Price)

= 9.32-7.66=1.66

Maintenance_ Price (SD)

Lug_Boot

Small 9.36

Big 8.37

SD(Maintenance_ Price,
Lug_Boot)=P(Small)SD(Small)+P(Big)SD(Big)

= ∗ 9.36 + ∗ 8.37 = 8.86

SDR= SD(Maintenance_ Price)- SD(Maintenance_ Price, Lug_Boot)=
9.32-8.86= 0.46

Maintenance_ Price (SD)

Safety
High 7.87

Low 10.59

166

SD(Maintenance_ Price, Safety)=P(High)SD(High)+P(Low)SD(Low)

= ∗ 7.87 + ∗ 10.59 = 9.02

SDR= SD(Maintenance_ Price)- SD(Maintenance_ Price, Safety)= 9.32-
9.02=0.3

SDR of Buying_Price is highest so we select Buying_Price as our root
node.

Step 2 ->

Now we will consider the records of ‘High’. For High SD is 7.66 (which is
not less than 50% global SD therefore branch will be splitted.

Buying_Price Lug_Boot Safety Maintenance_ Price?
(in thousand)

High Small High 45
High Big High 52
High Big Low 23
High Big High 46
High Small Low 30

For Buying_Price = High, SD=10.87
We will calculate SDR of only Lug_Boot and Safety

Maintenance_ Price (SD)

Lug_Boot
Small 7.5
Big 12.49

SD(High, Lug_Boot)=P(Small)SD(Small)+P(Big)SD(Big)

= ∗ 7.5 + ∗ 12.49 = 10.49

SDR= SD(High)- SD(Maintenance_ Price, Lug_Boot) = 10.87-10.49
=0.38

Maintenance_ Price (SD)

Safety
High 3.09
Low 3.50

SD(High, Safety)=P(High)SD(High)+P(Low)SD(Low)= ∗ 3.09 + ∗3.5 = 3.25
SDR= SD(High)- SD(Maintenance_ Price, Safety)= 10.87-3.25=7.62

Buying_Price

High
Medium

Low

167

SDR of Safety is highest so we select Safety as next node below High
branch.

For Buying_Price =High and Safety= High, SD is 3.50 which is less than
50% SD of database, so we can directly write down the answer.

For Buying_Price =High and Safety= Low, SD is 3.09 which is less than
50% SD of database, so we can directly write down the answer.

To write down the answer we take average of values of following records,

For Buying_Price =High and Safety= High, Maintenance _Price =
45+52+46/3= 47.7

For Buying_Price =High and Safety= Low, Maintenance _Price =
23+30/2= 26.5

Step 3->
Now we will consider the records of ‘Medium’

Buying_Price Lug_Boot Safety Maintenance_ Price? (in thousand)
Medium Small High 46
Medium Big Low 43
Medium Small Low 52
Medium Big High 44

For Buying_Price = Medium SD is 3.49 which is less than 50% SD of
database, so we can directly write down the answer as 46.3. The answer is
calculated by taking the average of values of Maintenance_ Price for
Medium records (average of 46, 43, 52, and 44).

Buying_Price

High

Medium

Low

Safety

High Low

46.3

47.7 26.5

Buying_Price

High
Medium

Low

Safety

High Low

47.7 26.5

168

Step 4 ->

Now we will consider the records of ‘Low’. For Low SD is 7.78 (which is
not less than 50% global SD therefore branch will be splitted.

Buying_Price Lug_Bo
ot

Safety Maintenance_ Price?
(in thousand)

Low Small High 25
Low Small Low 30
Low Small High 35
Low Big High 38
Low Big Low 48

For Buying_Price= Low, SD=7.78

Now only Lug_Boot attribute is remaining, so we can directly take
Lug_Boot as a next node below Low branch.

To write down the answer we take average of values of following records,
For Buying_Price = Low and Lug_Boot = Small, Maintenance_Price =
25+30+35/3= 30

For Buying_Price = Low and Lug_Boot = Big, values of
Maintenance_Price = 38+ 48/2=43.

Final Regression Tree is,

10.5 CLUSTERING TREES

Imagine you are a collector of vintage Hammond tonewheel organs. You
have been monitoring an online auction site, from which you collected
some data about interesting transactions:

Buying_Price

High
Medium

Low

Safety

High Low

46.3

47.7 26.5

Lug_Boot

Small Big

30 43

169

Model Condition Leslie Price Resesrve Bids
B3 Excellent No 45 30 22
T202 Fair Yes 6 0 9
A100 Good No 11 8 13
T202 Good No 3 0 1
M102 Good Yes 9 5 2
A100 Excellent No 18 15 15
T202 Fair No 1 0 3
A100 Good Yes 19 19 1
E112 Fair No 1 0 5

.
 The means of the three numerical features are (13.3, 8.6,7.9) and their

variances are (158,101.8,48.8). The average squared Euclidean
distance to the mean is then the sum of these variances, which is 308.6.

 For the A100 cluster these vectors are (16,14,9.7) and
(12.7,20.7,38.2),with average squared distance to the mean 71.6; for
the T202 cluster they are (3.3, 0,4.3) and (4.2, 0,11.6), with average
squared distance 15.8.

 Using this split we can construct a clustering tree whose leaves are
labeled with the mean vectors (Figure 10.5.1).

 A clustering tree learned from the data in example using Euclidean
distance on the numerical features.

Figure 10.5.1

SUMMARY

In this chapter we have seen Tree model which can be seen as a particular
type of rule model where the if-parts of the rules are organised in a tree
structure. Decision trees are very strong and most suitable tools for
classification and prediction. If we want to predict class of instances then
we have to use decision trees whereas if we want to predict the value of
target variable then we have to use regression tree.Rankers will give
simple order to leaves in descending order based on empirical probability.
Probability estimation predicts empirical probabilities of each leave and
calculate Laplace or m- estimation to smooth curve. In classifier we have

170

to choose the operating conditions and find operating point that fits the
condition. Getting good ranking behaviour, because from a good ranker.
We can get good classification and probability estimation, but not
necessarily the other way round.

UNIT END QUESTIONS

1. Create a decision tree for the attribute “ class” using the respective values

Eyecolour Married Sex Hairlength class
Brown yes male Long Football
Blue yes male Short Football
Brown yes male Long Football
Brown no female Long Netball
Brown no female Long Netball
Blue no male Long Football
Brown no female Long Netball
Brown no male Short Football
Brown yes female Short Netball
Brown no female Long Netball
Blue no male Long Football
Blue no male Short Football

2. Write short note on Issues in Decision Tree

3. For the given data determine the entropy after classification using each
attribute for classification seperatley and find which attribute is taken as
decision attribute for the root by finding information gain with respect to
entropy of Temperature as reference attribute.

Sr. no. Temperature Wind Humidity
1 Hot Weak High
2 Hot Strong High
3 Mild Weak Normal
4 Cool Strong High
5 Cool Weak Normal
6 Mild Strong Normal
7 Mild Weak High
8 Hot Strong High
9 Mild Weak Normal
10 Hot Strong Normal

4. For a Sunburn dataset given below, construct a decision tree

Name Hair Height Weight Location Class
Swati Blonde Average Light No Yes
Sunita Blonde Tall Average Yes No
Anita Brown Short Average Yes No
Lata Blonde Short Average No Yes

Radha Red Average Heavy No Yes
Maya Brown Tall Heavy No No
Leena Brown Average Heavy No No
Rina Blonde Short Light Yes No

171

LIST OF REFERENCES

 https://www.kdnuggets.com/2019/06/main-approaches-machine-
learning-models.html

 Foster Provost, pedro Domingos,” Tree Induction for Probability-
Based Ranking”, Machine Learning,

 SpringerLink, volume 52, pages199–215 (2003)

 https://www.solver.com/regression-trees

 Luke Zappia, Alicia Oshlack, “Clustering trees: a visualization for
evaluating clusterings at multiple resolutions”, GigaScience, Volume
7, Issue 7, July 2018, giy083,

172

UNIT V

11
PROBABILISTIC MODEL

Unit Structure
11.0 Objective

11.1 Introduction: Probabilistic Model

11.1.2 Normal Distribution And Its Geometric Interpretation:

11.2 Standard Normal Variate

11.2.1standard Normal Distribution:

11.2.2 Application In Machine Learning:

11.2.2.1 Histograms:

11.2.3 Feature Analysis:

11.2.4 Central Limit Theorem And Normal Distribution:

11.2.5 Naïve Bayes Classifier Algorithm

11.2.6 Why Is It Called Naïve Bayes:

11.2.7 Advantages of Naïve Bayes Classifier:

11.2.8 Applications of Naïve Bayes Classifier:

11.2.9 Types of Naïve Bayes Model:

11.2.10 Descriptive Learning Maximum Like Hood:

11.2.11 Problem of Probability Density Estimation:

11.2.12 Maximum Likelihood Estimation:

11.2.13 Relationship to Machine Learning:

11.2.14 Probabilistic Model With Hidden Variable:

11.3 Why Probabilistic Ml Models

11.3.1 Objective Functions:

11.3.2 Maximization Method:

11.3.3 Usage of Em Algorithm –
11.3.4 Advantages of Em Algorithm:

11.4 Gaussian Mixture Model & Compression Based Model

11.4.1 Gaussian Mixture Model:

Summary
Unit End Questions

References

11.0 OBJECTIVE

Probabilistic modelling provides a framework for understanding what
learning is, and has therefore emerged as one of the principal theoretical
and practical approaches for designing machines that learn from data

173

acquired through experience. The probabilistic framework, which
describes how to represent and manipulate uncertainty about models and
predictions, has a central role in scientific data analysis, machine learning,
robotics, cognitive science and artificial intelligence.

11.1 INTRODUCTION: PROBABILISTIC MODEL

Probabilistic models are widely used in text mining and applications range
from topic modelling, language modelling, document classification and
clustering to information extraction. And the examples of models are the:
topic modelling methods PLSA and LDA are special applications of
mixture models.

The probabilistic model is a model that uses probability theory to model
the uncertainty in the data. Like terms in topics are modelled by
multinomial distribution and the observations for a random field are
modelled by Gibbs distribution. Which are the major probabilistic models
being Mixture and Models Mixture models are used for clustering data
points, where each component is a distribution for that cluster, and each
data point belongs to one cluster with a certain probability. Finite mixture
models require the user to specify the number of clusters. The typical
applications of mixture models in text mining include topic models, like
PLSA and LDA. Bayesian Nonparametric Models Bayesian
nonparametric models refer to probabilistic models with infinite-
dimensional parameters, which usually have a stochastic process that is
infinite-dimensional as the prior distribution. Infinite mixture model is one
type of nonparametric model, which can deal with the problem of
selecting the number of clusters for clustering. The Dirichlet process
mixture model belongs to the infinite mixture model, and can help to
detect the number of topics in topic modelling.

Mixture Models: Mixture model is a probabilistic model originally
proposed to address the multi-modal problem in the data, and now is
frequently used for the task of clustering in data mining, machine learning
and statistics. defines the distribution of a random variable, which contains
multiple components and each component represents a different
distribution following the same distribution family with different
parameters. Mixture Model Basic framework of mixture models, Their
variations and applications in text mining area, and the standard learning
algorithms for them. General Mixture Model Framework In a mixture
model, given a set of data points, e.g., the height of people in a region,
they are treated as an instantiation of a set of random variables. According
to the observed data points, the parameters in the mixture model can be
learned. For example, we can learn the mean and standard deviation for
female and male height distributions, if we model height of people as a
mixture model of two Gaussian distributions. Assume n random variables
X1,X2, . . . , xn with observations x1, x2, . . . , xn, following the mixture
model with K components.

174

11.1.2 Normal Distribution and its Geometric Interpretation:

Normal Distribution is an important concept in statistics and the backbone
of Machine Learning. A Data Scientist needs to know about Normal
Distribution when they work with Linear Models (perform well if the data
is normally distributed), Central Limit Theorem, and exploratory data
analysis. As discovered by Carl Friedrich Gauss, Normal
Distribution/Gaussian Distribution is a continuous probability
distribution. It has a bell-shaped curve that is symmetrical from the mean
point to both halves of the curve.

Figure 11.1.2 Normal Distribution and its Geometric Interpretation

A continuous random variable “x” is said to follow a normal distribution
with parameter μ(mean) and σ(standard deviation), if it’s probability
density function is given by,

This is also called a normal variate.

11.2 STANDARD NORMAL VARIATE

If “x” is a normal variable with a mean(μ) and a standard deviation(σ)
then, = −
where z = standard normal variate

11.2.1 Standard Normal Distribution:

175

The simplest case of the normal distribution, known as the Standard
Normal Distribution, has an expected value of μ(mean) 0 and σ(s.d.) 1,
and is described by this probability density function,

 
2

2
1

2

z

f z e





Where z   

Distribution Curve Characteristics:
1. The total area under the normal curve is equal to 1.

2. It is a continuous distribution.

3. It is symmetrical about the mean. Each half of the distribution is a
mirror image of the other half.

4. It is asymptotic to the horizontal axis.

5. It is unimodal.

Area Properties:
The normal distribution carries with it assumptions and can be completely
specified by two parameters: the mean and the standard deviation. If the
mean and standard deviation are known, you can access every data point
on the curve.

The empirical rule is a handy quick estimate of the data's spread given the
mean and standard deviation of a data set that follows a normal
distribution. It states that:

● 68.26% of the data will fall within 1 sd of the mean(μ±1σ)

● 95.44% of the data will fall within 2 sd of the mean(μ±2σ)

● 99.7% of the data will fall within 3 sd of the mean(μ±3σ)

● 95% — (μ±1.96σ)

● 99% — (μ±2.75σ)

Figure 11.2.1 slandered normal distribution

176

Thus, almost all the data lies within 3 standard deviations. This rule
enables us to check for Outliers and is very helpful when determining the
normality of any distribution.

11.2.2 Application in Machine Learning:
In Machine Learning, data satisfying Normal Distribution is beneficial for
model building. It makes math easier. Models like LDA, Gaussian Naive
Bayes, Logistic Regression, Linear Regression, etc., are explicitly
calculated from the assumption that the distribution is a bivariate or
multivariate normal. Also, Sigmoid functions work most naturally with
normally distributed data. Many natural phenomena in the world follow a
log-normal distribution, such as financial data and forecasting data. By
applying transformation techniques, we can convert the data into a normal
distribution. Also, many processes follow normality, such as
many measurement errors in an experiment, the position of a particle that
experiences diffusion, etc. So, it’s better to critically explore the data and
check for the underlying distributions for each variable before going to fit
the model.

Visualization Techniques:

11.2.2.1 Histograms:
It is a kind of bar graph which is an estimate of the probability distribution
of a continuous variable. It defines numerical data and divided them into
uniform bins which are consecutive, non-overlapping intervals of a
variable.

Figure 11.2.2.1Histograms1

177

kdeplot:
It is a Kernel Distribution Estimation Plot which depicts the probability
density function of the continuous or non-parametric data variables i.e. we
can plot for the univariate or multiple variables altogether.

Figure 11.2.2.1Histograms2

11.2.3 Feature Analysis:
Let’s take an example of feature rm(average number of rooms per
dwelling) closely resembling a normal distribution.

Though it has some distortion in the right tail, We need to check how
close it resembles a normal distribution. For that, we need to check the Q-
Q Plot.When the quantiles of two variables are plotted against each other,
then the plot obtained is known as quantile — quantile plot or plot. This
plot provides a summary of whether the distributions of two variables are
similar or not with respect to the locations.

178

Figure 11.2.3 plots variable

Here we can clearly see that feature is not normally distributed. But it
somewhat resembles it. We can conclude that standardizing
(StandardScaler) this feature before feeding it to a model can generate a
good result.

11.2.4 Central Limit Theorem and Normal Distribution:
CLT states that when we add a large number of independent random
variables to a dataset, irrespective of these variables' original distribution,
their normalized sum tends towards a Gaussian distribution. Machine
Learning models generally treat training data as a mix
of deterministic and random parts. Let the dependent variable(Y) consists
of these parts. Models always want to express the dependent
variables(Y) as some function of several independent variables(X). If the
function is sum (or expressed as a sum of some other function) and the
number of X is really high, then Y should have a normal distribution. Here
ml models try to express the deterministic part as a sum of deterministic
independent variables(X):deterministic + random = fun (deterministic
(1)) +…+ fun(deterministic(n)) + model error If the whole deterministic
part of Y is explained by X, then the model error depicts only the random
part and should have a normal distribution. So if the error distribution is
normal, then we may suggest that the model is successful. Else some other
features are absent in the model but have a large enough influence on Y, or
the model is incorrect.

11.2.5 Naïve Bayes Classifier Algorithm

● Naïve Bayes algorithm is a supervised learning algorithm, which is
based on Bayes theorem and used for solving classification problems.

● It is mainly used in text classification that includes a high-dimensional
training dataset.

179

● Naïve Bayes Classifier is one of the simple and most effective
Classification algorithms which helps in building the fast machine
learning models that can make quick predictions.

● It is a probabilistic classifier, which means it predicts on the basis
of the probability of an object.

● Some popular examples of Naïve Bayes Algorithm are spam
filtration, Sentimental analysis, and classifying articles.

11.2.6 Why is it called Naïve Bayes:
● The Naïve Bayes algorithm is comprised of two words Naïve and

Bayes, which can be described as:

● Naïve: It is called Naïve because it assumes that the occurrence of a
certain feature is independent of the occurrence of other features. Such
as if the fruit is identified on the bases of color, shape, and taste, then
red, spherical, and sweet fruit is recognized as an apple. Hence each
feature individually contributes to identify that it is an apple without
depending on each other.

● Bayes: It is called Bayes because it depends on the principle of Bayes'
Theorem.

● Bayes' Theorem:
● Bayes' theorem is also known as Bayes' Rule or Bayes' law, which is

used to determine the probability of a hypothesis with prior
knowledge. It depends on the conditional probability.

● The formula for Bayes' theorem is given as:

Where,

P(A|B) is Posterior probability: Probability of hypothesis A on the
observed event B.

P(B|A) is Likelihood probability: Probability of the evidence given that
the probability of a hypothesis is true.

P(A) is Prior Probability: Probability of hypothesis before observing the
evidence.

P(B) is Marginal Probability: Probability of Evidence.

Working of Naïve Bayes' Classifier:
Working of Naïve Bayes' Classifier can be understood with the help of the
below example:

Suppose we have a dataset of weather conditions and corresponding
target variable "Play". So using this dataset we need to decide that
whether we should play or not on a particular day according to the weather
conditions. So to solve this problem, we need to follow the below steps:

180

1. Convert the given dataset into frequency tables.

2. Generate Likelihood table by finding the probabilities of given
features.

3. Now, use Bayes theorem to calculate the posterior probability.

Problem: If the weather is sunny, then the Player should play or not?

Solution: To solve this, first consider the below dataset:

Outlook Play
0 Rainy Yes
1 Sunny Yes
2 Overcast Yes
3 Overcast Yes
4 Sunny No
5 Rainy Yes
6 Sunny Yes
7 Overcast Yes
8 Rainy No
9 Sunny No
10 Sunny Yes
11 Rainy No
12 Overcast Yes
13 Overcast Yes

Table 11.2.6 :Frequency table for the Weather Conditions

Weather Yes No
Overcast 5 0
Rainy 2 2
Sunny 3 2
Total 10 5

Table 11.2.6 :Frequency table for the Weather Conditions solution

11.2.7 Advantages of Naïve Bayes Classifier:

● Naïve Bayes is one of the fast and easy ML algorithms to predict a
class of datasets.

● It can be used for Binary as well as Multi-class Classifications.

● It performs well in Multi-class predictions as compared to the other
Algorithms.

● It is the most popular choice for text classification problems.

● Naive Bayes assumes that all features are independent or unrelated, so
it cannot learn the relationship between features.

11.2.8 Applications of Naïve Bayes Classifier:

● It is used for Credit Scoring.

● It is used in medical data classification.

181

● It can be used in real-time predictions because Naïve Bayes
Classifier is an eager learner.

● It is used in Text classification such as Spam filtering and Sentiment
analysis.

11.2.9 Types of Naïve Bayes Model:
There are three types of Naive Bayes Model, which are given below:

● Gaussian: The Gaussian model assumes that features follow a normal
distribution. This means if predictors take continuous values instead of
discrete, then the model assumes that these values are sampled from
the Gaussian distribution.

● Multinomial: The Multinomial Naïve Bayes classifier is used when
the data is multinomial distributed. It is primarily used for document
classification problems, it means a particular document belongs to
which category such as Sports, Politics, education, etc.
The classifier uses the frequency of words for the predictors.

● Bernoulli: The Bernoulli classifier works similar to the Multinomial
classifier, but the predictor variables are the independent Booleans
variables. Such as if a particular word is present or not in a document.
This model is also famous for document classification tasks.

11.2.10 Descriptive Learning maximum like hood:
Density estimation is the problem of estimating the probability distribution
for a sample of observations from a problem domain. There are many
techniques for solving density estimation, although a common framework
used throughout the field of machine learning is maximum likelihood
estimation. Maximum likelihood estimation involves defining a likelihood
function for calculating the conditional probability of observing the data
sample given a probability distribution and distribution parameters. This
approach can be used to search a space of possible distributions and
parameters. This flexible probabilistic framework also provides the
foundation for many machines learning algorithms, including important
methods such as linear regression and logistic regression for predicting
numeric values and class labels respectively, but also more generally for
deep learning artificial neural networks.

● Maximum Likelihood Estimation is a probabilistic framework for
solving the problem of density estimation.

● It involves maximizing a likelihood function in order to find the
probability distribution and parameters that best explain the observed
data.

● It provides a framework for predictive modelling in machine learning
where finding model parameters can be framed as an optimization
problem.

Descriptive Learning maximum like hood divided into three parts:

1. Problem of Probability Density Estimation

182

2. Maximum Likelihood Estimation

3. Relationship to Machine Learning

11.2.11 Problem of Probability Density Estimation:
A common modelling problem involves how to estimate a joint probability
distribution for a dataset.

For example, given a sample of observation (X) from a domain (x1, x2, x3,
…,xn), where each observation is drawn independently from the domain
with the same probability distribution (so-called independent and
identically distributed, i.i.d., or close to it).

Density estimation involves selecting a probability distribution function
and the parameters of that distribution that best explain the joint
probability distribution of the observed data (X).

● How do you choose the probability distribution function?

● How do you choose the parameters for the probability distribution
function?

This problem is made more challenging as sample (X) drawn from the
population is small and has noise, meaning that any evaluation of an
estimated probability density function and its parameters will have some
error.

● There are many techniques for solving this problem, although two
common approaches are:

● Maximum a Posteriori (MAP), a Bayesian method.

● Maximum Likelihood Estimation (MLE), frequentist method.

● The main difference is that MLE assumes that all solutions are equally
likely beforehand, whereas MAP allows prior information about the
form of the solution to be harnessed.

● In this post, we will take a closer look at the MLE method and its
relationship to applied machine learning.

11.2.12 Maximum Likelihood Estimation:
One solution to probability density estimation is referred to as Maximum
Likelihood Estimation, or MLE for short.

Maximum Likelihood Estimation involves treating the problem as an
optimization or search problem, where we seek a set of parameters that
results in the best fit for the joint probability of the data sample (X).

First, it involves defining a parameter called theta that defines both the
choice of the probability density function and the parameters of that
distribution. It may be a vector of numerical values whose values change
smoothly and map to different probability distributions and their
parameters.

183

In Maximum Likelihood Estimation, we wish to maximize the probability
of observing the data from the joint probability distribution given a
specific probability distribution and its parameters, stated formally as:

● P(X | theta)

This conditional probability is often stated using the semicolon (;) notation
instead of the bar notation (|) because theta is not a random variable, but
instead an unknown parameter. For example:

● P(X ; theta)

or

● P(x1, x2, x3, …, xn ; theta)

This resulting conditional probability is referred to as the likelihood of
observing the data given the model parameters and written using the
notation L() to denote the likelihood function. For example:

● L(X ; theta)

The objective of Maximum Likelihood Estimation is to find the set of
parameters (theta) that maximize the likelihood function, e.g. result in the
largest likelihood value.

● maximize L(X ; theta)We can unpack the conditional probability
calculated by the likelihood function.

Given that the sample is comprised of n examples, we can frame this as
the joint probability of the observed data samples x1, x2, x3,
…,xn in X given the probability distribution parameters (theta).

● L(x1, x2, x3, …, xn ; theta)

The joint probability distribution can be restated as the multiplication of
the conditional probability for observing each example given the
distribution parameters.

● product i to n P(xi ; theta)

Multiplying many small probabilities together can be numerically unstable
in practice, therefore, it is common to restate this problem as the sum of
the log conditional probabilities of observing each example given the
model parameters.
● sum i to n log (P(xi ; theta))

Where log with base-e called the natural logarithm is commonly used.

11.2.13 Relationship to Machine Learning:

This problem of density estimation is directly related to applied machine
learning. We can frame the problem of fitting a machine learning model as
the problem of probability density estimation. Specifically, the choice of

184

model and model parameters is referred to as a modelling hypothesis h,
and the problem involves finding h that best explains the data X.

● P(X ; h)

We can, therefore, find the modelling hypothesis that maximizes the
likelihood function.

● maximize L(X ; h)

Or, more fully:

● maximize sum i to n log(P(xi ; h))

This provides the basis for estimating the probability density of a dataset,
typically used in unsupervised machine learning algorithms.

11.2.14 Probabilistic model with hidden variable:
Mathematics is the foundation of Machine Learning, and its branches such
as Linear Algebra, Probability, and Statistics can be considered as integral
parts of ML. As a Computer Science and Engineering student, one of the
questions I had during my undergraduate days was in which ways the
knowledge that was acquired through math courses can be applied to ML
and what are the areas of mathematics that play a fundamental role in ML.
I believe this is a common question among most of the people who are
interested in Machine Learning. Therefore, I decided to write a blog series
on some of the basic concepts related to “Mathematics for Machine
Learning”. In this series, my intention is to provide some directions into
which areas to look at and explain how those concepts are related to ML. I
am not going deep into the concepts and I believe there are a lot of
resources with quite good examples that explain each of these concepts in
a detailed manner.

As the first step, I would like to write about the relationship between
probability and machine learning. In machine learning, there are
probabilistic models as well as non-probabilistic models. In order to have
a better understanding of probabilistic models, the knowledge about basic
concepts of probability such as random variables and probability
distributions will be beneficial. I will write about such concepts in my next
blog. However, in this blog, the focus will be on providing some idea on
what are probabilistic models and how to distinguish whether a model is
probabilistic or not.

What are Probabilistic Machine Learning Models?
In order to understand what is a probabilistic machine learning model,
let’s consider a classification problem with N classes. If the classification
model (classifier) is probabilistic, for a given input, it will provide
probabilities for each class (of the N classes) as the output. In other words,
a probabilistic classifier will provide a probability distribution over the N
classes. Usually, the class with the highest probability is then selected as
the Class for which the input data instance belongs.

185

However, logistic regression (which is a probabilistic binary classification
technique based on the Sigmoid function) can be considered as an
exception, as it provides the probability in relation to one class only
(usually Class 1, and it is not necessary to have “1 — probability of Class1
= probability of Class 0” relationship). Because of these properties,
Logistic Regression is useful in Multi-Label Classification problems as
well, where a single data point can have multiple class labels.

Some examples for probabilistic models are Logistic Regression, Bayesian
Classifiers, Hidden Markov Models, and Neural Networks (with a
SoftMax output layer).If the model is Non-Probabilistic (Deterministic), it
will usually output only the most likely class that the input data instance
belongs to. Vanilla “Support Vector Machines” is a popular non-
probabilistic classifier.

Let’s discuss an example to better understand probabilistic classifiers.
Take the task of classifying an image of an animal into five classes —
{Dog, Cat, Deer, Lion, Rabbit} as the problem. As input, we have an
image (of a dog). For this example, let’s consider that the classifier works
well and provides correct/ acceptable results for the particular input we are
discussing. When the image is provided as the input to the probabilistic
classifier, it will provide an output such as (Dog (0.6), Cat (0.2),
Deer(0.1), Lion(0.04), Rabbit(0.06)). But, if the classifier is non-
probabilistic, it will only output “Dog”.

11.3 WHY PROBABILISTIC ML MODELS

One of the major advantages of probabilistic models is that they provide
an idea about the uncertainty associated with predictions. In other words,
we can get an idea of how confident a machine learning model is on its
prediction. If we consider the above example, if the probabilistic classifier
assigns a probability of 0.9 for ‘Dog’ class instead of 0.6, it means the
classifier is more confident that the animal in the image is a dog. These
concepts related to uncertainty and confidence are extremely useful when
it comes to critical machine learning applications such as disease diagnosis
and autonomous driving. Also, probabilistic outcomes would be useful for
numerous techniques related to Machine Learning such as Active
Learning.

11.3.1 Objective Functions:
In order to identify whether a particular model is probabilistic or not, we
can look at its Objective Function. In machine learning, we aim to
optimize a model to excel at a particular task. The aim of having an
objective function is to provide a value based on the model’s outputs, so
optimization can be done by either maximizing or minimizing the
particular value. In Machine Learning, usually, the goal is to minimize
prediction error. So, we define what is called a loss function as the
objective function and tries to minimize the loss function in the training
phase of an ML model.

186

If we take a basic machine learning model such as Linear Regression, the
objective function is based on the squared error. The objective of the
training is to minimize the Mean Squared Error / Root Mean Squared
Error (RMSE) (Eq. 1). The intuition behind calculating Mean Squared
Error is, the loss/ error created by a prediction given to a particular data
point is based on the difference between the actual value and the predicted
value (note that when it comes to Linear Regression, we are talking about
a regression problem, not a classification problem).The loss created by a
particular data point will be higher if the prediction gives by the model is
significantly higher or lower than the actual value. The loss will be less
when the predicted value is very close to the actual value. As you can see,
the objective function here is not based on probabilities, but on the
difference (absolute difference) between the actual value and the predicted
value.

Here, n indicates the number of data instances in the data set, true is the
correct/ true value and predict is the predicted value (by the linear
regression model).

When it comes to Support Vector Machines, the objective is to maximize
the margins or the distance between support vectors. This concept is also
known as the ‘Large Margin Intuition’. As you can see, in both Linear
Regression and Support Vector Machines, the objective functions are not
based on probabilities. So, they can be considered as non-probabilistic
models. On the other hand, if we consider a neural network with a
SoftMax output layer, the loss function is usually defined using Cross-
Entropy Loss (CE loss) (Eq. 2). Note that we are considering a training
dataset with ’n’ number of data points, so finally take the average of the
losses of each data point as the CE loss of the dataset. Here, Yi means the
true label of the data point i and p(Yi) means the predicted probability for
the class Yi (probability of this data point belongs to the class Yi
as assigned by the model).

The intuition behind Cross-Entropy Loss is ; if the probabilistic model is
able to predict the correct class of a data point with high confidence, the
loss will be less. In the example we discussed about image classification,
if the model provides a probability of 1.0 to the class ‘Dog’ (which is the
correct class), the loss due to that prediction = -log(P(‘Dog’)) = -
log(1.0)=0. Instead, if the predicted probability for ‘Dog’ class is 0.8, the
loss = -log(0.8)= 0.097. However, if the model provides a low probability
for the correct class, like 0.3, the loss = -log(0.3) = 0.523, which can be
considered as a significant loss.

187

In a binary classification model based on Logistic Regression, the loss
function is usually defined using the Binary Cross Entropy loss (BCE
loss).Here y_i is the class label (1 if similar, 0 otherwise) and p(s_i) is the
predicted probability of a point being class 1 for each point ‘i’ in the
dataset. N is the number of data points. Note that as this is a binary
classification problem, there are only two classes, class 1 and class 0.As
you can observe, these loss functions are based on probabilities and hence
they can be identified as probabilistic models. Therefore, if you want to
quickly identify whether a model is probabilistic or not, one of the easiest
ways is to analyse the loss function of the model.

So, that’s all for this article. I hope you were able to get a clear
understanding of what is meant by a probabilistic model. In the next blog,
I will explain some probability concepts such as probability distributions
and random variables, which will be useful in understanding probabilistic
models. If you find anything written here which you think is wrong, please
feel free to comment.

11.3.2 Maximization method:
In the real-world applications of machine learning, it is very common that
there are many relevant features available for learning but only a small
subset of them are observable. So, for the variables which are sometimes
observable and sometimes not, then we can use the instances when that
variable is visible is observed for the purpose of learning and then predict
its value in the instances when it is not observable. On the other
hand, Expectation-Maximization algorithm can be used for the latent
variables (variables that are not directly observable and are actually
inferred from the values of the other observed variables) too in order to
predict their values with the condition that the general form of probability
distribution governing those latent variables is known to us. This
algorithm is actually at the base of many unsupervised clustering
algorithms in the field of machine learning.
It was explained, proposed and given its name in a paper published in
1977 by Arthur Dempster, Nan Laird, and Donald Rubin. It is used to find
the local maximum likelihood parameters of a statistical model in the
cases where latent variables are involved and the data is missing or
incomplete.

1. Algorithm:

1. Given a set of incomplete data, consider a set of starting parameters.

2. Expectation step (E – step): Using the observed available data of
the dataset, estimate (guess) the values of the missing data.

3. Maximization step (M – step): Complete data generated after the
expectation (E) step is used in order to update the parameters.

4. Repeat step 2 and step 3 until convergence.

188

Figure 11.3.2 statistics of parameter

● The essence of Expectation-Maximization algorithm is to use the
available observed data of the dataset to estimate the missing data and
then using that data to update the values of the parameters. Let us
understand the EM algorithm in detail.

● Initially, a set of initial values of the parameters are considered. A set
of incomplete observed data is given to the system with the
assumption that the observed data comes from a specific model.

● The next step is known as “Expectation” – step or E-step. In this step,
we use the observed data in order to estimate or guess the values of the
missing or incomplete data. It is basically used to update the variables.

● The next step is known as “Maximization”-step or M-step. In this step,
we use the complete data generated in the preceding “Expectation” –
step in order to update the values of the parameters. It is basically used
to update the hypothesis.

● Now, in the fourth step, it is checked whether the values are
converging or not, if yes, then stop otherwise repeat step-2 and step-
3 i.e. “Expectation” – step and “Maximization” – step until the
convergence occurs.

Figure 11.3.2 Algorithm of maximization

189

11.3.3 Usage of EM algorithm:

● It can be used to fill the missing data in a sample.

● It can be used as the basis of unsupervised learning of clusters.

● It can be used for the purpose of estimating the parameters of Hidden
Markov Model (HMM).

● It can be used for discovering the values of latent variables.

11.3.4 Advantages of EM algorithm:

● It is always guaranteed that likelihood will increase with each
iteration.

● The E-step and M-step are often pretty easy for many problems in
terms of implementation.

● Solutions to the M-steps often exist in the closed form.

11.3.5 Disadvantages of EM algorithm:

● It has slow convergence.

● It makes convergence to the local optima only.

● It requires both the probabilities, forward and backward (numerical
optimization requires only forward probability).

11.4 GAUSSIAN MIXTURE MODEL & COMPRESSION
BASED MODEL

Suppose there are set of data points that needs to be grouped into several
parts or clusters based on their similarity. In machine learning, this is
known as Clustering.

● There are several methods available for clustering like:

● K Means Clustering

● Hierarchical Clustering

● Gaussian Mixture Models

Normal or Gaussian Distribution:
In real life, many datasets can be modeled by Gaussian Distribution
(Univariate or Multivariate). So it is quite natural and intuitive to assume
that the clusters come from different Gaussian Distributions. Or in other
words, it is tried to model the dataset as a mixture of several Gaussian
Distributions. This is the core idea of this model.

11.4.1 Gaussian Mixture Model:
Data scientists use various machine learning algorithms to discover
patterns in large data that can lead to actionable insights. In general, high-
dimensional data are reduced by obtaining a set of principal components
so as to highlight similarities and differences. In this work, we deal with

190

the reduced data using a bivariate mixture model and learning with a
bivariate Gaussian mixture model. We discuss a heuristic for detecting
important components by choosing the initial values of location
parameters using two different techniques: cluster means, k-means and
hierarchical clustering, and default values in the “mixtools” R package.
The parameters of the model are obtained via an expectation maximization
algorithm. The criteria from Bayesian point are evaluated for both
techniques, demonstrating that both techniques are efficient with respect to
computation capacity. The effectiveness of the discussed techniques is
demonstrated through a simulation study and using real data sets from
different fields.

In real data such as engineering data, efficient dimension reduction is
required to reveal underlying patterns of information. Dimension
reduction can be used to convert data sets containing millions of functions
into manageable spaces for efficient processing and analysis.
Unsupervised learning is the main approach to reducing dimensionality.
Conventional dimensional reduction approaches can be combined with
statistical analysis to improve the performance of big data systems [1].
Many dimension reduction techniques have been developed by statistical
and artificial intelligence researchers. Principal component analysis
(PCA), introduced in 1901 by Pearson [2], is one of the most popular of
these methods. The main purpose of PCA is to reduce the dimensionality
of a data set consisting of a large number of interrelated variables, while
retaining as much as possible of the variation present in the data set.
Among the many PCA methods, singular value decomposition is used in
numerical analysis and Korhonen–Loève expansion in electrical
engineering. Eigenvector analysis and characteristic vector analysis are
often used in the physical sciences. In image analysis, the Hotelling
transformation is often used for principal component projection.

In recent years, there has been increasing interest in PCA mixture models.
Mixture models provide a useful framework for the modelling of complex
data with a weighted component distribution. Owing to their high
flexibility and efficiency, they are used widely in many fields, including
machine learning, image processing, and data mining. However, because
the component distributions in a mixture model are commonly formalized
as probability density functions, implementations in high-dimensional
spaces are constrained by practical considerations.PCA mixture models
are based on a mixture-of-experts technique, which models a nonlinear
distribution through a combination of local linear sub models, each with a
fairly simple distribution [3]. For the selection of the model, a PCA
mixture model was proposed by Kim, Kim, and Bang [4], which has a
more straightforward expectation maximization (EM) calculation, does not
require a Gaussian error term for each mixture component, and uses an
efficient technique for model order selection. The researchers applied the
proposed model to the classification of synthetic data and eye detection
[4].

191

For multimode processes, the Gaussian mixture model (GMM) was
developed to estimate the probability density function of the process data
under normal operating conditions. However, in the case of high and
collinear process variables, learning from process data with GMM can be
difficult or impossible. A novel multimode monitoring approach based on
the PCA mixture model was proposed by Xu, Xie, and Wang [5] to
address this issue. In this method, first, the PCA technique is applied
directly to each Gaussian component’s covariance matrix to reduce the
dimension of process variables and to obtain non-singular covariance
matrices. Then, an EM algorithm is used to automatically optimize the
number of mixture components. A novel process monitoring scheme for
the detection of multimode processes was developed using the resulting
PCA mixture model. The monitoring performance of the proposed
approach has been evaluated through case studies [5].In recent years,
hyperspectral imaging has become an important research subject in the
field of remote sensing. An important application of hyperspectral imaging
is the identification of land cover areas. The rich content of hyperspectral
data enables forests, urban areas, crop species, and water supplies to be
recognized and classified. In 2016, Kutluk, Kayabol, and Akan [6]
proposed a supervised classification and dimensionality reduction method
for hyperspectral images, using a mixture of probability PCA (PPCA)
models. The proposed mixture model simultaneously allows the reduction
of dimensionality and spectral classification of the hyperspectral image.
Experimental findings obtained using real hyperspectral data indicate that
the proposed approach results in better classification than the state-of-the-
art methods [6].

PROBABILITY CONCEPTS - SUMMARY

1. Probabilities of outcomes.

Experiment = observe something

Outcome = one of possible things we can observe

Sample space = S = set of possible outcomes = {a1, …,an}

Pr{a } = lim
N

times a occurs in N repetitions
N

for each outcome a (Intuitive defn)
Pr{a} ≥ 0

for each a


i = 1

n
Pr{ai}= 1.

192

Example 1. Company makes diodes. Pick a diode from production line.
S = {defective, good} = {d, g}.
Probability diode is defective = Pr{d} = 0.003,
Pr{g} = 0.997.

defective
diodes Pr{d} as # diodes,

Example 2. Roll a die.
S = {1, 2, 3, 4, 5, 6}.
Probability of 1 = Pr{ 1 } = 1/6, etc

Example 3. Newsstand buys and sells The Wall Street Journal. Observe how
many copies he sells in a day.
S = {0, 1, 2, 3, 4}.

Probability of selling zero = Pr{0} = 0.21, Pr{1} = 0.26, Pr{2} = 0.32, Pr{3} = 0.16,
Pr{4} = 0.05,

2. Probabilities of events.

Event = a set of outcomes = a subset of the sample space S.

Pr{E } = lim
n

times outcome is in E in n independent repetitions
n

(intuitivedefn)

Pr{ {b1, b2, ..., bm} } = 
i = 1

m
Pr{bi}

(precisedefn)

Pr{EF} = Pr{E } + Pr{F} if E and F are disjoint
(additivity)

Example 4 (related to Example 1). Look at two diodes. S = {gg, gd, dg, dd}. Pr{
gg } = 0.9943, Pr{ gd } = 0.0027, Pr{ dg } = 0.0027, Pr{ dd } = 0.0003. E = {gg,
gd} = event where first diode is good, etc

Probability first diode is good = Pr{E} = Pr{ {gg, gd} } = Pr{gg} + Pr{gd} = 0.9943 +
0.0027 = 0.97, etc

Example 5 (Example 3 continued). Newsstand stocks 2 copies of The Wall
Street Journal on a certain day. Probability enough copies for all the customers
that want to buy one = Pr{ {0, 1, 2} } = Pr{0} + Pr{1} + Pr{2} = 0.21 + 0.26 + 0.32
= 0.79.

Example 6 (Example 2 continued). Roll a die. Let A = {2, 4, 6} = even and
B = {1, 3} = 1 or a 3. A and B are disjoint. AB = {1, 2, 3, 4, 6} anything except a

193

5. We have Pr{A} = 1/2, Pr{B} = 1/3, and Pr{AB} = 5/6. Note
Pr{AB} = Pr{A} + Pr{B}.

Problem 1. Office Max keeps a certain number of staplers on hand. If they sell
out on a certain day, they order 6 more from the distributor and these are
delivered in time for the start of the next day. Thus the inventory at the start of
a day can be 1, 2, 3, 4, 5, or 6. Probability of 1 stapler at start of a day = Pr{1} =
0.09, Pr{2} = 0.21, Pr{3} = 0.29, Pr{4} = 0.23, Pr{5} = 0.12 and Pr{6} = 0.06.
Probability that there is at least 3 staplers at the start of the day = Pr{{3, 4, 5, 6}
} = 0.7.

3. Random variables.

random variable = function defined on sample space = function X that
assigns value X(a) to each outcome a

{X = x} = {a: X(a) = x} = set of outcomes such that X(a) = x
(abbreviation)

Pr{X = x} = Pr{a: X(a) = x} = Probability that X assumes value x

Pr{XA} = Pr{a: X(a) A} = Probability that value of X lies in A

Pr{X = x, Y = y} = Pr{a: X(a) = x and Y(a) = y} = Probability that X assumes
value x and Y assumes value y

f(x) = Pr{ X = x } = probability mass function of random variable X

Example 7 (Example 4 continued). Look at two diodes. X1 = result of first
diode and X2 = result of second diode.

X1(gg) = g, X1(gd) = g, X1(dg) = d, X1(dd) = d

X2(gg) = g, X2(gd) = d, X2(dg) = g, X2(dd) = d

{X1 = g} = {gg, gd} Pr{X1 = g} = Pr{gg, gd} = Pr{gg} + Pr{gd} =
0.9943 + 0.0027 = 0.97

Example 8 (Two rolls of a die).S =









(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

. Pr{ (i, j) } =

1/36 for all i, j

X1 = result of first roll X1(i,j) = i

X2 = result of second roll X2(i,j) = j

{X1 = 3} = event where first roll is 3 = {(3, 1), (3, 2), (3, 2), (3, 4), (3, 5), (3, 6)}

194

Pr{X1 = 3} = Probability the first roll is a 3 =Pr{(3, 1), (3, 2), (3, 2), (3, 4), (3, 5),
(3, 6)}

= Pr{ (3, 1) } + Pr{ (3, 2) } + Pr{ (3, 2) } + Pr{ (3, 4) } + Pr{ (3, 5) } + Pr{ (3, 6) }

= 1
36 + 1

36 + 1
36 + 1

36 + 1
36 + 1

36 = 1
6

Pr{X1 = i} = Pr{X2 = j} = 1
6 for all i, j

Pr{X1 = i, X2 = j} = 1
36 for all i, j

Pr{X1  {2, 3, 4} } = Probability the first roll is 2, 3, or 4 = Pr{X1 = 2} +
Pr{X1 = 3} + Pr{X1 = 4}
= 1

6 + 1
6 + 1

6 = ½
T = sum of the two rolls = X1 + X2

{T = 7} = event where sum is 7 = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}
Pr{ T = 7 } = Pr{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} = 1

36 + 1
36 + 1

36 + 1
36 +

1
36 + 1

36 = 1
6

Pr{ T = n } = f(n) = (6 - |n – 7|)/36
n 2 3 4 5 6 7 8 9 10 11 12
__

f(n)
1

36
2

36
3

36
4

36
5

36
6

36
5

36
4

36
3

36
2

36
1

36

Problem 2 (related to Example7). Look at three diodes. S = {ggg, ggd, gdg, gdd, dgg,

dgd, ddg, ddd}.
Pr{ggg } = (0.999)3

Pr{ggd } = Pr{ gdg } = Pr{ dgg} = (0.999)2(0.001)
Pr{gdd } = Pr{ dgd } = Pr{ ddg} = (0.999)(0.001)2

Pr{ddd } = (0.001)3

X1 = condition of first diode,
X2 = condition of second diode,
X3 = condition of third diode,

N = number of diodes in the batch of three that are defective
N = X1 + X2 + X3 if d = 1 and g = 0

Find the probability mass functions of X1,X2, X3 and N.

Example 9. Observe the condition of the department's copier at the start of
each day on two successive days: good condition = g, poor condition = p,
broken = b. S = {gg, gp, gb, pg, pp, pb, bg, bp, bb}.

X1 = state of the copier on the first day, either g, p or b,

X2 = state of the copier on the second day,

1. Conditional probability.

Conditional probability. Conditional probabilities adjust the probability of
something happening according to given information.

195

Pr{A | B} =
Pr{AB}

Pr{B} = conditional probability of event A given event B

Example 10 (in context of Example 4). Take two successive diodes from
production line. Test first diode; it is defective. Does this affect the probability
that the second diode is defective?
Intuitive approach. Take a large number of pairs of diodes and test both diodes
in each pair. Only consider pairs where first diode is defective. Count the
number in which the second diode is also defective. For a large number of pairs

Probability second diode is defective if first diode is defective


which both are defective

which the first is defective

=

which both are defective
total # of pairs

which the first is defective
total # of pairs


Pr{both are defective}

Pr{first is defective} =

0.0003
0.003 = 0.1,

as the number of pairs . The observation that the first diode is defective
does affect the probability that the second diode is defective.

Example 11 (in context of Example 2). Roll a die. Find conditional probability
number is even given that if is 4 or larger. Let A = {2, 4, 6} = number is even and

B = {4, 5, 6} number is 4 or larger. Pr{A | B} =
Pr{AB}

Pr{B} =
1/3
1/2 = 2/3.

Problem 3. You own stock in Megabyte Computer Corporation. There is an
80% chance of Megabyte making a profit if it makes a technological
breakthrough, but only a 30% chance of making a profit if they don't make the
breakthrough. There is a 40% chance of its making the breakthrough. Before
you can find out if they made the breakthrough, you go on a 6 month vacation
to Tahiti. Then one day you receive the following message from your
stockbroker. "Megabyte made a profit." What is the probability that Megabyte
made the breakthrough?
Ans: 0.64

2.Independent Events.

Events A and B are independent if the probability that the outcome is in A is the
same as the probability that the outcome is in A given that the outcome lies in
B, i.e.

Pr{A | B} = Pr{A}

196

Since Pr{A | B} =
Pr{AB}

Pr{B} this is equivalent to

Pr{AB} = Pr{A} Pr{B}

(most books use this defn)

Example 12 (Example 10 continued). In Example 10 the second diode being
defective is not independent of the first diode being defective.

Example 13 (Example 11 continued). In Example 11 getting an even number is
not independent of getting 4 or larger since Pr{even | 4 or larger } = 2/3, while
Pr{even} = 1/2. On the other hand if C = {3, 4, 5, 6} is the event of getting 3 or
larger then Pr{A | C} = 1/2 so getting an even number is independent of getting
3 or larger.

Problem 4. a) You roll a die twice as in Example 5. Consider the event where
the sum of the numbers on the two rolls is 7. Is this independent of rolling a 1
on the first roll? Ans: Yes.

b) Let B be the event of rolling a 1 on the first roll or second roll or both. Is
event where the sum of the numbers on the two rolls is 7 independents of B
Ans: No.

3.Independent Random Variables.

Random variables X and Y are independent if knowledge of the values of one of
them doesn't influence the probability that the other assumes various values,
i.e.

Pr{X = x and Y = y} =Pr{X = x} Pr{Y = y} for any x and y

Example 14 (in the context of Example 5). Roll two dice. X1 = result of first roll
and X2 = result of second roll are independent since

Pr{X1 = i, X2 = j} = 1
36 = 1

6
1
6 = Pr{X1 = i} Pr{X2 = j} for all i,

j

Example 15 (in the context of Example 4). Look at two diodes. X1 condition of
first diode and X2 = condition of second diode are not independent since

Pr{X1 = d, X2 = d} = 0.0003
Pr{X1 = d} Pr{X2 = d} = (0.003)  (0.003) = 0.000009

Example 16 (variation on Example 4). Look at two diodes. X1 condition of first
diode and X2 = condition of second diode. Suppose the probability mass
functions of X1 and X2 are given by
f(g) = Pr{ X1 = g } = 0.997 f(d) = Pr{ X1 = d } = 0.003
h(g) = Pr{ X2 = g } = 0.997 h(d) = Pr{ X2 = d } = 0.003
Furthermore, suppose X1 and X2 are independent. Find the probabilities of the
four outcomes gg, gd, dg and dd.

197

Using the independence one has

Pr{ gg } = Pr{ X1 = g, X2 = g } = Pr{ X1 = g } Pr{ X2 = g } = f(g)h(g) =
(0.997)(0.997) = 0.994009

Pr{ gd } = Pr{ X1 = g, X2 = d } = Pr{ X1 = g } Pr{ X2 = d } = f(g)h(d) =
(0.997)(0.003) = 0.002991

Pr{ dg } = Pr{ X1 = d, X2 = g } = Pr{ X1 = d } Pr{ X2 = g } = f(d)h(g) =
(0.003)(0.997) = 0.002991

Pr{ dd } = Pr{ X1 = d, X2 = d } = Pr{ X1 = d } Pr{ X2 = d } = f(d)h(d) =
(0.003)(0.003) = 0.000009

This illustrates a common situation where we describe a probability model by
giving one or more random variables along with their probability mass functions
together with some information, such as independence, about the joint
behavior of the random variables. We do this instead of listing the elements in
the sample space along with their probabilities.

Random variables, X1, ..., Xn, then they are independent if knowledge of the
values of some of the variables doesn't change the probability that the others
assume various values, i.e.
Pr{ X1 = x1, ..., Xn = xn } = Pr{X1 = x1} ...Pr{Xn = xn}for any x1, ..., xn.

Example 17 (continuation of Example 16). Look at two diodes. Xi = condition of
ith diode Let Xi be the condition of the ith diode for i = 1, 2, …, n. Suppose all the
Xi have the same probability mass function given by

fi(g) = Pr{ Xi = g } = 0.997 fi(d) = Pr{ Xi = d } = 0.003

Furthermore, suppose all the Xi are independent. Find the probability that all n
diodes are good.

Using the independence one has
Pr{ gg…g } = Pr{ X1 = g,X2 = g, …, Xn = g } = = Pr{ X1 = g } Pr{ X2 = g } …Pr{ Xn = g
}
= (0.997) (0.997) … (0.997) = (0.997)n

7. Averages of Data

x1, x2, …, xn = sequence of observations of something

x
_

= average of x1, x2, …, xn =
x1 + x2 + + xn

n

Example 18. You are a wholesaler for gasoline and each week you buy and sell
gasoline.

198

q1 = $2.70, q2 = $2.60, q3 = $2.80, q4 = $2.70, q5 = $2.80: wholesale
price of gasoline for last five weeks

q
_

=
q1 + q2 + q3 + q4 + q5

5 =
2.70 + 2.60 + 2.80 + 2.70 + 2.80

5 =
13.60

5 =

$2.72

8. Means of Random Variables

X = random variable

x1, …, xm = the values X can assume

f(x) = Pr{X = x} = probability mass function of X
X = E(X) = mean of X = expected value of X

= Pr{X = x1} x1 + Pr{X = x2} x2 ++ Pr{X = xm} xm = 
k = 1

m
Pr{X = xk} xk

= f(x1)x1 + f(x2)x2 ++ f(xm)xm = 
k = 1

m
f(xk)xk

Rationale. We are modeling a situation where we are going to make a
sequence of related observations by a sequence X1, X1, …, Xn of random
variables where Xj is the result of the jth observation. Suppose each of the
random variables Xj takes on the values x1, …, xm and all the random variables
have the same probability mass function f(x) where f(xk) = Pr{Xj = xk} for each j
and k. Suppose q1, q1, …, qn are the values we actually observe for the random

variables X1, X1, …, Xn. In our computation of q
_

let's group all the values of qj

that equal x1 together and all the values of qj that equal x2 together, etc. Then
we have

q
_

=
q1 + q2 + + qn

n =

(x1 + x1 + + x1) + (x2 + x2 + + x2) + + (xm + xm + + xm)
n

=
g1x1 + g2x2 + + gmxm

n =
g1

n x1 +
g2

n x2 + +
gm

n xm

where gj is the number of times that xj appears in q1, q1, …, qn. As n we

expect
gk

n Pr{X = xk} = f(xk) where X denotes any of the Xj. So as n we

expect

q
_
f(x1)x1 + f(x2)x2 ++ f(xm)xm = X

The fact that this holds if the Xj are independent is actually an important
theorem in probability theory called the Law of Large Numbers.

199

Example 19. Suppose in Example 18 the set of possible values for the wholesale
gasoline prices for any particular week is S = {2.60, 2.70, 2.80, 2.90, 3.00}. Let Xj

be the wholesale price of gasoline on week j where week one is the first full
week of July of this year. The Xj can be regarded as random variables. Assume
each of the Xj has the same probability distribution and the probabilities that
the gasoline price Xj takes on the values in S for the jth week is as follows

Pr{Xj = 2.60} = 0.25Pr{Xj = 2.70} = 0.4Pr{Xj = 2.80} = 0.2Pr{Xj = 2.90} = 0.1Pr{Xj =
3.00} = 0.05

X = (0.25) (2.60) + (0.4) (2.70) + (0.2) (2.80) + (0.1) (2.90) + (0.05) (3.00)
= 0.52 + 1.08 + 0.56 + 0.29 + 0.15 = 2.73

If the Xj are all independent, then we would expect the average q
_

n of the actual
prices over n weeks to approach $2.73 as n.

Problem 5. Newsstand buys and sells The Wall Street Journal. X = number he
sells in a day. Pr{X = 0} = 0.21, Pr{X = 1} = 0.26, Pr{X = 2} = 0.32, Pr{X = 3} =
0.16, Pr{X = 4} = 0.05, Find X. Answer: 1.58

Problem 6. Look at a diode. S = {d, g}. Pr{d} = 0.003, Pr{g} = 0.997.
Random variable X is defined by X(d) = 1 and X(g) = 0. Find X. Ans:
X = 0.003 = Pr{d}

9. Properties of Means
E(X + Y) = E(X) + E(Y)
E(cX) = cE(X)
E(XY) = E(X)E(Y) if X and Y are independent

E(g(X)) = 
k = 1

m
g(xk)f(xk)

Example 20. A company produces transistors. They estimate that the
probability of any one of the transistors is defective is 0.1. Suppose a box
contains 20 transistors. What is the expected number of defective transistors in
a box?

Solution. Let Xj = 1 if the jth transistor is defective and Xj = 0 if isis good. The
number N of defective transistors is N = X1 + … + X20. E(N) = E(X1) + … + E(X20) =
(0.1) + … + (0.1) = 2.

This example illustrates the following general proposition.

Example 21. Consider a random walk where the probability of a step to the
right is ½ and the probability of a step to the left is ½. After 4 steps your
position Z could be either -2, 0 or 2 with probabilities ¼, ½ and ¼ respectively.
Compute E(Z2).

Solution.E(Z2) = (- 2)2Pr{Z = - 2} + (0)2Pr{Z = 0} + (2)2Pr{Z = 2} = (4)(1/4) + (0)(1/2)
+ (4)(1/4) = 2. If we were to compute E(Z2) from the definition (2) then E(Z2) =
(4) Pr{Z2 = 4} + (0)2Pr{Z2 = 0} = (4)(1/2) + (0)2 (1/2) = 2.

200

The Law of Large Numbers. Let X1, X1, …, Xn, … be a sequence of independent
random variables all taking on the same set of values and having the same

probability mass function f(x). Let X
_

n =
X1 + X2 + + Xn

n . Then Pr{a: X
_

n(a)

X} = 1 as n .

QUESTIONS

1. What is a Probabilistic model?

2. What is the difference between deterministic and Probabilistic
machine learning modes??

3. How is probabilities used in machine learning

4. What is a Probabilistic model in information retrieval?

REFERENCES

 Mitchell Machine Learning, Tata McGraw-Hill Education; First
edition

 Python Willi Richert, Shroff/Packt Publishing Building Machine
Learning Systems With; First edition (2013) .

201

12

MACHINE LEARNING
IN HYPER -AUTOMATION

Unit Structure

12.0 Objective

12.1 Introduction

12.1.1 Business Analysis And Predictions:

12.1.2 Automated Machine Learning:

12.1.3 Synchronization of Machine Learning And Iot

12.1.4 Faster Computing Power

12.1.5 Reinforcement Learning

12.1.6 Machine Learning In Cybersecurity

12.2 Models’ Symbols Bagging And Boosting
12.2.1 Bias And Variance

12.2.2 Ensemble Methods

12.2.2.1parallel Ensemble Methods

12.2.2.2 Sequential Ensemble Methods

12.3 Bagging

12.3.1bootstrapping

12.3.2 Aggregation

12.4 How Is Bagging Performed

12.4.1 Implementation of Bagging

12.5 Boosting

12.5.1 How Is Boosting Performed:

12.5.2 Similarities Between Bagging And Boosting:

12.5.3 Bagging Vs Boosting:

12.5.4 Multitask Learning:

12.5.4.1 When to Use Multi-Task Learning

12.5.4.2 Building A Multi-Task Model

12.6 Learning A Shared Representation

12.6.1 Optimizing For Multiple Tasks

12.6.2 What Is Online Machine Learning?

12.6.2.1 Objective:

12.6.2.2 Offline Vs Online Learning

12.6.2.3 Online Learning Use Cases

12.7 Sequences Prediction

202

12.7.1 Types Of Sequence Prediction Problems:

12.7.2 Predicting The Next Value:

12.7.3 Time-Series Forecasting:

12.7.4 Webpage/Product Recommendation:

12.7.5 Predicting A Class Label:

12.7.5.1 Examples Of Sequence Classification
Applications:

12.8 What Is Active Learning

12.8.1 How Does Active Learning Work:

12.8.2 Stream-Based Selective Sampling:

12.8.3 Pool-Based Sampling:

Summary

Unit End Questions

References

12.0 OBJECTIVE

Hyper parameters can be classified as model hyper parameters, that cannot
be inferred while fitting the machine to the training set because they refer
to the model selection task, or algorithm hyper parameters, that in
principle have no influence on the performance of the model but affect the
speed and quality of the learning process.

12.1 INTRODUCTION

Hyper-automation, which Gartner has identified as an IT mega-trend, is
the likelihood that virtually everything in an organization can be
automated. Legacy business procedures, for example, should actually be
automated. The COVID-19 crisis has significantly increased the adoption
of this phenomenon, which is otherwise known as intelligent process
automation and digital process automation.

Machine learning and AI are crucial aspects and indispensable propellers
of hyper-automation (in addition to various innovations such as process
automation tools). For the sake of effectiveness, hyper-automation
processes cannot rely on statically packaged software. Automated
enterprise processes must have had the ability to adapt to evolving
conditions and respond to unexpected situations.

12.1.1 Business Analysis and Predictions:
This strategy allows experts to collect and analyse a set of data over a time
frame that is thereafter screened and used to make smart decisions.
Machine learning networks can provide suppositions with accuracy as
much as about 95% whenever trained using multiple data sets. In 2021 and
beyond, we can expect that companies should integrate recurrent neural

203

networks for high-fidelity prediction. For instance, machine learning
solutions can be integrated to unravel hidden trends and precise
predictions. A clear illustration of this can be seen in insurance companies
identifying likely frauds that could in one way or another have a great
impact on them.

12.1.2 Automated Machine Learning:
The next phase of growth in machine learning trends is automated
machine learning. It is a good idea for individuals who are not
professionals in the complex world of machine learning as well as for
professional data analysts and scientists. Automated machine learning
enables these data experts to build machine learning models with
increased productivity and efficiency while featuring extremely high
quality. Thus, a tool such as AutoMachine Learning can be utilized to train
top-quality custom ML models for clustering, regression, and
classification without extensive knowledge of how to program. It can
seamlessly produce an adequate level of customization without an in-
depth understanding of the complicated workflow of machine learning. It
can also be useful in utilizing machine learning best practices while saving
resources and time. A good example of such AutoML is automated
machine learning created by Microsoft Azure which can design and launch
predictive models.

12.1.3 Synchronization of Machine Learning and Iot:
The Internet of Things is already a developed technology that involves the
connection of several “things” or devices across a network, each having
the ability to interact with each other. These devices are continually
increasing, at such a rate that there is the possibility of having over 64
billion IoT devices by the end of 2025.The function of all of these devices
is to collect data that can be evaluated and processed to generate useful
insights. This is where ML becomes very pertinent. ML algorithms can be
utilized to transform the data gathered by IoT devices into useful
actionable outcomes.

A good example of this is Green Horizons, which is a project launched by
IBM’s Research Lab in China whose goal is to regulate the pollution rates
to better breathable levels. This is achievable with the use of an IoT
network wherein sensors gather emissions from automobiles, traffic levels,
weather, airflow direction, and pollen levels, among other things. Then
machine learning algorithms are employed to figure out the most effective
way to minimize these emissions. The synchronization of machine
learning and IoT can as well be observed in the area of smart cars where
autonomous-driving vehicles must be very precise and each part must
communicate with one another in split seconds on the road. This
demonstrates how essential the integration of these technologies is.In fact,
Gartner forecasts that over 80% of business IoT projects will utilize AI
and ML in one way or the other by 2022. This paced growth is a lot
greater than the 10% of enterprise projects currently utilizing it.

204

12.1.4 Faster Computing Power:
AI analysts are basically close to the beginning of understanding the field
of artificial neural networks and the most suitable approach to arranging
them. This suggests that within the next year, algorithmic successes will
continue increasing at an overwhelming pace with pragmatic progress and
better problem-solving mechanisms. Similarly, cloud ML solutions are
adding momentum as third-party cloud service platforms support the
deployment of machine learning algorithms in the cloud. AI can resolve a
reasonable range of unfavourable issues that require discovering insights
and making decisions. Although, in the absence of the ability to lay hands
on a machine’s proposition, people will assume that it is cumbersome to
accept that suggestion. With defined lines, conceive continued
development in the transitional period increasing the explain ability and
transparency regarding Artificial Intelligence algorithms.

12.1.5 Reinforcement Learning:
Reinforcement Learning (RL) is also one of the machine learning trends to
look out for this year. It can generally be used by businesses in the near
future. It is an innovative use of deep learning which makes use of its
personal experiences to enhance the effectiveness of accumulated data RL,
Artificial Intelligence programming is deployed with several conditions
that determine what kind of activity will be executed by the software. In
respect to various actions and outcomes, the software auto-learns actions
to work to achieve the proper ultimate goal. A typical illustration of RL is
a chatbot that attends to basic user queries such as consultation calls, order
booking, greetings. ML Development Organizations can make use of
Reinforcement Learning to ensure the ingenuity of the chatbot by
including sequential conditions to it – for instance, differentiating
prospective buyers and transferring calls to the appropriate service agent.
Some other applications of reinforcement Learning are aircraft control,
industrial automation, robot motion control, as well as business processes
and strategic planning.

12.1.6 Machine Learning in Cybersecurity:
Machine learning continues to skyrocket in this contemporary time, it is
likewise spreading its applications in several various sectors. One of the
most common among these industries is the cybersecurity industry.
Machine learning has a lot of applications in cybersecurity, some of which
are detection of cyber threats, combating cyber-crime that equally utilizes
ML capabilities, enhancing available antivirus software, among other
things.

Machine learning is also employed in the creation of smart antivirus
software that can detect any malware or virus by its irregular behaviour
instead of just utilizing its signature like regular antivirus. Hence, the
smart antivirus has the capacity to detect older threats from formerly
experienced viruses and also fresh threats from viruses that were newly
created by screening their abnormal behaviour. Several companies are
integrating machine learning into cybersecurity.

205

12.2 MODELS’ SYMBOLS BAGGING AND BOOSTING

This blog will explain ‘Bagging and Boosting’ most simply and shortly.
But let us first understand some important terms which are going to be
used later in the main content. Let’s start with an example, If we want to
predict ‘sales’ of a particular company based on its certain features, then
many algorithms like Linear Regression and Decision Tree Regressor can
be used. But both of these algorithms will make different predictions. Why
is it so? One of the key factors is how much bias and variance they
produce.Cool, but what if we don’t know anything about Bias and
Variance. So let’s jump to Bias and Variance first.

12.2.1 Bias and Variance:
Bias: When we train our model on the given data, it makes certain
assumptions, some correct and some incorrect. But when the model is
introduced with testing or validation data, these assumptions (obviously
incorrect ones) may create a difference in predicted value. So, to conclude
from this,” Bias is the difference between the Predicted Value and the
Expected Value”. When there is a high bias error, it results in a model that
is not capable of taking so much variation. Since it does not learn enough
from the training data, it is called Underfitting.

Variance is the error that occurs when the model captures fluctuations or
noises of the data.

To explain further, the model learns too much from the training data, so
that when it is introduced with new testing data, it is unable to predict the
result accurately. When there is a high variance error, your model is so
specific to the trained data, it is called Overfitting.

12.2.2 Ensemble Methods:
Let’s take an example, If you want to purchase a new laptop, then you
would browse different shopping websites/apps and check the price,
features, and reviews/ratings and then compare them. You would also visit
some local stores and also ask your friends or relatives for their opinion.
Then at the end, you take a decision considering all these factors.
Ensemble models in machine learning work on a similar idea. Ensemble
methods create multiple models (called base learners/weak learners.) and
combine/aggregate them into one final predictive model to decrease the
errors (variance or bias). This approach allows us to produce better and
more accurate predictive performance compared to a single model.

Ensemble methods can be divided into two groups:

12.2.2.1Parallel ensemble methods:
In this method base learners are generated parallelly, hence encouraging
independence between the base learners. Due to the application of
averages, the overall error is reduced.

206

12.2.2.2 Sequential ensemble methods:
In this method base learners are generated by sequence try; hence base
learners are dependent on each other. Overall performance of the model is
then increased by allocating higher weights to previously mislabelled/mis-
predicted learners.

Boosting and bagging are the two most popularly used ensemble methods
in machine learning. Now as we have already discussed prerequisites, let’s
jump to this blog’s main content.

12.3 BAGGING

Bagging stands for Bootstrap Aggregating or simply Bootstrapping +
Aggregating.

12.3.1Bootstrapping in Bagging refers to a technique where multiple
subsets are derived from the whole (set) using the replacement procedure.

12.3.2 Aggregation in Bagging refers to a technique that combines all
possible outcomes of the prediction and randomizes the outcome.

Hence many weak models are combined to form a better model.

Bagging is a Parallel ensemble method, where every model is constructed
independently. Bagging is used when the aim is to reduce variance. So,
now let’s see how bagging is performed.

12.4 HOW IS BAGGING PERFORMED

The whole process of Bagging is explained in just a few steps. Please refer
to the diagram below for a clearer understanding and visualization.

1. ‘n’ number of data subsets (d1, d2, d3…. dn) are generated randomly
with replacement from the original dataset ‘D’; Bootstrapping.

2. Now these multiple sub-datasets are used to train multiple models
(which are called ‘Weak Learners’) like m1, m2, m3….mn.

3. Final prediction (Ensemble model) is given based on the aggregation
of predictions from all weak models; Aggregating.

In the case of Regressor: the average/mean of these predictions is
considered as the final prediction.

In the case of Classifiers: the majority vote gained from the voting
mechanism is considered as the final prediction.

207

Figure 12.4.1 Bagging Representation

As “random sampling with replacement” is used here therefore every
element has the same probability to appear in a new training sub-dataset
and also some observations may be repeated. Ensemble model produced
with these weak models is much more robust and with low variance.

12.4.1 Implementation of Bagging:
Random forest algorithm uses the concept of Bagging. Here is a sample
code for how Bagging can be implemented practically. Remember it’s just
a sample code, just to introduce you to the required library.

12.5 BOOSTING

Boosting is a Sequential ensemble method, where each consecutive model
attempts to correct the errors of the previous model.

If a base classifier is misclassified in one weak model, its weight will get
increased and the next base learner will classify it more correctly. Since
the output of one base learner will be input to another, hence every model
is dependent on its previous model. Boosting is used when the aim is
to reduce bias. So now let’s see how bagging is performed.

12.5.1 How is Boosting performed:
The whole process of Boosting is explained in just a few steps. Please
refer to the diagram below for a clearer understanding and visualization.
1. let ‘d1’ be the data-subset, which is generated randomly with

replacement from the original dataset ‘D’.
2. Now this subset is used to train the model ‘m1’(which is called a weak

learner).

208

3. This model is then used to make predictions on the original(complete)
dataset. Elements or instances which are misclassified/mis-predicted
by this model, will be given more weights while choosing the next
data-subset.

4. Let ‘d2’ be the data-subset, which is generated randomly with
replacement from the dataset ‘D'(which is now updated with weights).
In this step, instances which have more weights (concluded from the
previous step) will be more likely to be chosen.

4. Now this subset is again used to train the model ‘m2’(which is called a
weak learner).

5. Above steps are repeated for ‘n’ number of times, to get ‘n’ such
models(m1,m2,m3…..mn)

6. Results of these ‘n’ weak models are combined to make a final
prediction.

12.5.1 Figure Boosting
Implementation:

▪ AdaBoost
▪ Gradient boosting

These algorithms use Boosting in a different-different manner which we
will see in detail in the next blog.

Here is a sample code for how boosting can be implemented practically on
the AdaBoost algorithm. Remember it’s just a sample code, just to
introduce you to the required library.

12.5.2 Similarities Between Bagging and Boosting:

1. Both of them are ensemble methods to get N learners from one learner.

2. Both of them generate several sub-datasets for training by random
sampling.

3. Both of them make the final decision by averaging the N learners (or by
Majority Voting).

209

4. Both of them are good at providing higher stability.

12.5.3 Bagging Vs Boosting:

1. The Main Goal of Bagging is to decrease variance, not bias. The Main
Goal of Boosting is to decrease bias, not variance.

2. In Bagging multiple training data-subsets are drawn randomly with
replacement from the original dataset. In Boosting new sub-datasets
are drawn randomly with replacement from the weighted(updated)
dataset

3. In Bagging, every model is constructed independently. In Boosting,
new models are dependent on the performance of the previous model.

4. In Bagging, every model receives an equal weight. In Boosting,
models are weighted by their performance.

5. In Bagging, the final prediction is just the normal average. In
Boosting, the final prediction is a weighted average.

6. Bagging is usually applied where the classifier is unstable and has a
high variance. Boosting is usually applied where the classifier is stable
and has a high bias.

7. Bagging is used for connecting predictions of the same type. Boosting
is used for connecting predictions that are of different types.

8. Bagging is an ensemble method of type Parallel. Boosting is an
ensemble method of type Sequential

12.5.4 Multitask learning:
In most machine learning contexts, we are concerned with solving
a single task at a time. Regardless of what that task is, the problem is
typically framed as using data to solve a single task or optimize a single
metric at a time. However, this approach will eventually hit a performance
ceiling, oftentimes due to the size of the data-set or the ability of the
model to learn meaningful representations from it. Multi-task learning, on
the other hand, is a machine learning approach in which we try to
learn multiple tasks simultaneously, optimizing multiple loss functions at
once. Rather than training independent models for each task, we allow a
single model to learn to complete all of the tasks at once. In this process,
the model uses all of the available data across the different tasks to learn
generalized representations of the data that are useful in multiple contexts.
Multi-task learning has seen widespread usage across multiple domains
such as natural language processing, computer vision, and
recommendation systems. It is also commonly leveraged in industry, such
as at Google, due to its ability to effectively leverage large amounts of
data in order to solve related tasks.

12.5.4.1 When to use multi-task learning:
Before going into the specifics of how to implement a multi-task learning
model, it is first important to go through situations in which multi-task
learning is, and is not, appropriate. Generally, multi-task learning should

210

be used when the tasks have some level of correlation. In other words,
multi-task learning improves performance when there are underlying
principles or information shared between tasks. For example, two tasks
involving classifying images of animals are likely to be correlated, as both
tasks will involve learning to detect fur patterns and colours. This would
be a good use-case formulti-task learning since learning these images
features is useful for both tasks.

On the other hand, sometimes training on multiple tasks results
in negative transfer between the tasks, in which the multi-task model
performs worse than the equivalent single-task models. This generally
happens when the different tasks are unrelated to each other, or when the
information learned in one task contradicts that learned in another task.

12.5.4.2 Building a multi-task model:
Now that we know when we should use multi-task learning, we will go
through a simple model architecture for a multi-task model. This will
focus on a neural network architecture (deep multi-task learning), since
neural networks are by far the most common type of model used in multi-
task learning.

12.6 LEARNING A SHARED REPRESENTATION

At its core, deep multi-task learning aims to learn to produce generalized
representations that are powerful enough to be shared across different
tasks. I will focus on hard parameter sharing here, in which the different
tasks use exactly the same base representation of the input data.

Figure 12.6 learning sheared representation
As we can see, hard parameter sharing forces the model to learn an
intermediate representation that conveys enough information for all of the
tasks. The task-specific portions of the network all start with the same
base representation from the last shared layer.

211

Multi-task learning improves the generalizability of this representation
because learning multiple tasks forces the model to focus on the features
that are useful across all of the tasks. Assuming the tasks are correlated, a
feature that is important for Task A is also likely to be important for Task

C. The opposite is also true; unimportant features are likely to be
unimportant across all of the tasks.

Multi-task learning also effectively increases the size of your data-set,
since you are combining the data-sets from each task. By adding more
samples to the training set from different tasks, the model will learn to
better ignore the task-specific noise or biases within each individual data-
set.

12.6.1 Optimizing for multiple tasks:
Once the model’s architecture has been decided, we need to decide what
loss function to optimize. The simplest approach is to minimize a linear
combination of the individual tasks’ loss functions. Each task will have its
own individual loss function Li. So in our multi-task model, we simply
weight each loss function and minimize the sum of these weighted losses.

Now that we know how to build a multi-task model, we need to identify
how to apply this method to a given task. In many cases, it may seem like
you truly only have one task to solve, and it may not be obvious how to
adapt your problem into a multi-task learning situation. In cases where you
do not explicitly have multiple tasks, you can create auxiliary tasks that
aim to solve a problem that is related, but not identical, to your single
original task. By creating an auxiliary task, you can still apply multi-task
learning to your single primary task, and hopefully improve performance
on it.

Identifying an auxiliary task is generally domain-specific and there is no
one-size-fits-all approach to coming up with one. However, there are some
general principles that they will have in common. In general, the auxiliary
task should be related to the primary task, and should nudge the network
into learning important features for the primary task. For example, if the
primary task is to classify sequences of data, we can create an auxiliary
task that is to reconstruct the sequence with an autoencoder. This auxiliary
task explicitly forces the network to learn a sequence encoder that
produces a representation that is informative enough to be able to
reconstruct the original sequence. This is likely to improve performance
on the original task, classifying the sequence, as well, simply by producing
a more informative intermediate representation of the sequence.

12.6.2 What is Online Machine Learning?:
While you may not know batch or offline learning by name, you surely
know how it works. It’s the standard approach to machine learning.
Basically, you source a dataset and build a model on the whole dataset at
once. This is why it’s called batch learning. You may be wondering why it

212

goes by yet another name: offline learning. That’s because offline learning
is the polar opposite of another machine learning approach that you may
not even be aware of. It’s called online learning and you should know
what it can do for you.

12.6.2.1 Objective:
My objective in this post is to introduce you to online learning, describe its
use cases, and show you how to get started in Scikit-learn. To help
motivate things, know that online learning is a powerful tool that opens up
a whole new world. It’s a tool you can add to your toolbox, giving you
capabilities to tackle problems that may have once been beyond your
reach.

12.6.2.2 Offline vs Online Learning:
So what differentiates offline and online learning? In the simplest sense,
offline learning is an approach that ingests all the data at one time to build
a model whereas online learning is an approach that ingests data one
observation at a time. There’s a perfect one-to-one analogy here for those
familiar with Gradient Descent. Offline learning, also known as batch
learning, is akin to batch gradient descent. Online learning, on the other
hand, is the analog of stochasticgradient descent. In fact, as we’ll see,
implementing online learning in Scikit-learn will utilize stochastic
gradient descent with a variety of loss functions to create online learning
versions of algorithms like logistic regression and support vector
machines. There’s more to online learning, though.

Online learning is data efficient and adaptable. Online learning is data
efficient because once data has been consumed it is no longer required.
Technically, this means you don’t have to store your data. Online learning
is adaptable because it makes no assumption about the distribution of your
data. As your data distribution morphs or drifts, due to say changing
customer behaviour, the model can adapt on-the-fly to keep pace with
trends in real-time. In order to do something similar with offline learning
you’d have to create a sliding window of your data and retrain every time.
And if you’ve been paying attention, you surely noticed that you can use
this methodology to do streaming analytics.

12.6.2.3 Online Learning Use Cases:
Now that you know the difference between offline and online learning,
you may be wondering when to consider the latter. Simply put, consider
online learning when:

1. Your data doesn’t fit into memory

2. You expect the distribution of your data to morph or drift over time

3. Your data is a function of time (e.g. stock prices)

213

12.7 SEQUENCES PREDICTION

12.7.1 Types of Sequence Prediction Problems:
Sequence prediction is a popular machine learning task, which consists of
predicting the next symbol(s) based on the previously observed sequence
of symbols. These symbols could be a number, an alphabet, a word, an
event, or an object like a webpage or product. For example:

● A sequence of words or characters in a text

● A sequence of products bought by a customer

● A sequence of events observed on logs

Sequence prediction is different from other types of supervised learning
problems, as it imposes that the order in the data must be preserved when
training models and making predictions.

Sequence prediction is a common problem which finds real-life
applications in various industries. In this article, I will introduce to you
three types of sequence prediction problems:

● Predicting the next value

● Predicting a class label

● Predicting a sequence

12.7.2 Predicting the next value:
Being able to guess the next element of a sequence is an important
question in many applications. A sequence prediction model learns to
identify the pattern in the sequential input data and predict the next value.

12.7.2. Figure: Sequence Prediction Model

12.7.3 Time-series forecasting:
Time-series refers to an ordered series of data, where the sequence of
observations is sequentially in the time dimension. Time-series forecasting
is about making predictions of what comes next in the series. Thus, Time-
series forecasting involves training the model on historical data and using
them to predict future observations.

But what makes time-series forecasting different from a regression
problem? There are 2 things:

214

● Time series is time-dependent, which is ordered by time. But
Regression can be applied to non-ordered data where a target variable
is dependent on values taken by features.

● Time series looks for seasonality trends. For example, the power
demand in a day will drop at night, and the number of air passengers
will increase during the summer.

12.7.4 Webpage/product recommendation:
Have you searched for something, and every advertisement you saw next
is related to what you searched for?

For example, after watching the movie Avengers: Endgame, I was
searching for explanations of certain scenes. Ever since then, Google
Discover Feed started to show me content revolve around the Marvel
Cinematic Universe, even until today.

Even though it seems like Google Discover Feed is recommending a
collection of webpages, each webpage is an individual output.

12.7.5 Predicting a class label:
Sequence classification uses labelled datasets with some sequence inputs
and class labels as outputs, to train a classification model which can be
used to predict the class label of an unseen sequence.

12.7.5 figure: Sequence Classification Model

12.7.5.1 Examples of sequence classification applications:
Text categorization. Assigning labels to documents written in a natural
language has numerous real-world applications including sentiment
classification and topic categorization.

Anomaly detection. Researchers explore detecting abnormal behaviours in
4 different time-series datasets, 1) electrocardiograms, 2) Space Shuttle
Marotta valve, 3) power demand, and engine sensors datasets.

Genomic research. Researchers have been classifying protein sequences
into categories. This work could be potentially useful for the discovery of
a wide range of protein functions.

Health-informatics. Researchers use LSTM to classify electrocardiogram
(ECG) signals into five different classes to identify the condition of a
patient’s heart. This allows end-to-end learning, extracting features related
to ECG signals without any expert intervention.

215

Brain-computer interface. We extract brain signals from the
Electroencephalogram, decoding of the user’s intentions to operate the
assistive devices.

12.8 WHAT IS ACTIVE LEARNING

Active learning is the subset of machine learning in which a learning
algorithm can query a user interactively to label data with the desired
outputs. In active learning, the algorithm proactively selects the subset of
examples to be labelled next from the pool of unlabelled data. The
fundamental belief behind the active learner algorithm concept is that an
ML algorithm could potentially reach a higher level of accuracy while
using a smaller number of training labels if it were allowed to choose the
data it wants to learn from.

Therefore, active learners are allowed to interactively pose queries during
the training stage. These queries are usually in the form of unlabelled data
instances and the request is to a human annotator to label the instance.
This makes active learning part of the human-in-the-loop paradigm, where
it is one of the most powerful examples of success.

12.8.1 How does active learning work:
Active learning works in a few different situations. Basically, the decision
of whether or not to query each specific label depends on whether the gain
from querying the label is greater than the cost of obtaining that
information. This decision making, in practice, can take a few different
forms based on the data scientist’s budget limit and other factors.

12.8.2 Stream-based selective sampling:
In this scenario, the algorithm determines if it would be beneficial enough
to query for the label of a specific unlabelled entry in the dataset. While
the model is being trained, it is presented with a data instance and
immediately decides if it wants to query the label. This approach has a
natural disadvantage that comes from the lack of guarantee that the data
scientist will stay within budget.

12.8.3 Pool-based sampling:
This is the most well-known scenario for active learning. In this sampling
method, the algorithm attempts to evaluate the entire dataset before it
selects the best query or set of queries. The active learner algorithm is
often initially trained on a fully labelled part of the data which is then used
to determine which instances would be most beneficial to insert into the
training set for the next active learning loop. The downside of this method
is the amount of memory it can require.

Membership query synthesis:
This scenario is not applicable to all cases, because it involves the
generation of synthetic data. The active learner in this method is allowed

216

to create its own examples for labelling. This method is compatible with
problems where it is easy to generate a data instance.

SUMMARY

Bootstrap aggregating, also called bagging (from bootstrap aggregating),
is a machine learning ensemble meta-algorithm designed to improve the
stability and accuracy of machine learning algorithms used in statistical
classification and regression. It also reduces variance and helps to avoid
overfitting.

UNIT END QUESTIONS

1. What is bagging and boosting

2. What is Active learning

3. What is sequences prediction

4. Explain in detail Boosting

REFERENCES

● Alpaydin Ethem,Introduction to Machine Learning by MIT; 2 edition
(2010)

● Jacek M. Zurada , Jaico Publishing House Introduction to Artificial
Neural Systems by ; First edition (25 January 1994).

● Simon Haykin, PHI Private Ltd Neural Networks and Learning
Machines 2013.
